83 resultados para DENTAL ANOMALIES
Resumo:
Cerebral, ocular, dental, auricular, skeletal anomalies (CODAS) syndrome (MIM 600373) was first described and named by Shehib et al, in 1991 in a single patient. The anomalies referred to in the acronym are as follows: cerebral-developmental delay, ocular-cataracts, dental-aberrant cusp morphology and delayed eruption, auricular-malformations of the external ear, and skeletal-spondyloepiphyseal dysplasia. This distinctive constellation of anatomical findings should allow easy recognition but despite this only four apparently sporadic patients have been reported in the last 20 years indicating that the full phenotype is indeed very rare with perhaps milder or a typical presentations that are allelic but without sufficient phenotypic resemblance to permit clinical diagnosis. We performed exome sequencing in three patients (an isolated case and a brother and sister sib pair) with classical features of CODAS. Sanger sequencing was used to confirm results as well as for mutation discovery in a further four unrelated patients ascertained via their skeletal features. Compound heterozygous or homozygous mutations in LONP1 were found in all (8 separate mutations; 6 missense, 1 nonsense, 1 small in-frame deletion) thus establishing the genetic basis of CODAS and the pattern of inheritance (autosomal recessive). LONP1 encodes an enzyme of bacterial ancestry that participates in protein turnover within the mitochondrial matrix. The mutations cluster at the ATP-binding and proteolytic domains of the enzyme. Biallelic inheritance and clustering of mutations confirm dysfunction of LONP1 activity as the molecular basis of CODAS but the pathogenesis remains to be explored.
Resumo:
The aim of this study was to examine the prevalence of trisomies 18 and 13 in Europe and the prevalence of associated anomalies. Twenty-five population-based registries in 16 European countries provided data from 2000-2011. Cases included live births, fetal deaths (20+ weeks' gestation), and terminations of pregnancy for fetal anomaly (TOPFAs). The prevalence of associated anomalies was reported in live births. The prevalence of trisomy 18 and trisomy 13 were 4.8 (95%CI: 4.7-5.0) and 1.9 (95%CI: 1.8-2.0) per 10,000 total births. Seventy three percent of cases with trisomy 18 or trisomy 13 resulted in a TOPFA. Amongst 468 live born babies with trisomy 18, 80% (76-83%) had a cardiac anomaly, 21% (17-25%) had a nervous system anomaly, 8% (6-11%) had esophageal atresia and 10% (8-13%) had an orofacial cleft. Amongst 240 Live born babies with trisomy 13, 57% (51-64%) had a cardiac anomaly, 39% (33-46%) had a nervous system anomaly, 30% (24-36%) had an eye anomaly, 44% (37-50%) had polydactyly and 45% (39-52%) had an orofacial cleft. For babies with trisomy 18 boys were less likely to have a cardiac anomaly compared with girls (OR = 0.48 (0.30-0.77) and with trisomy 13 were less likely to have a nervous system anomaly [OR = 0.46 (0.27-0.77)]. Babies with trisomy 18 or trisomy 13 do have a high proportion of associated anomalies with the distribution of anomalies being different in boys and girls. © 2015 Wiley Periodicals, Inc.
Resumo:
Evidence of an association between early pregnancy exposure to selective serotonin reuptake inhibitors (SSRI) and congenital heart defects (CHD) has contributed to recommendations to weigh benefits and risks carefully. The objective of this study was to determine the specificity of association between first trimester exposure to SSRIs and specific CHD and other congenital anomalies (CA) associated with SSRI exposure in the literature (signals). A population-based case-malformed control study was conducted in 12 EUROCAT CA registries covering 2.1 million births 1995-2009 including livebirths, fetal deaths from 20 weeks gestation and terminations of pregnancy for fetal anomaly. Babies/fetuses with specific CHD (n = 12,876) and non-CHD signal CA (n = 13,024), were compared with malformed controls whose diagnosed CA have not been associated with SSRI in the literature (n = 17,083). SSRI exposure in first trimester pregnancy was associated with CHD overall (OR adjusted for registry 1.41, 95 % CI 1.07-1.86, fluoxetine adjOR 1.43 95 % CI 0.85-2.40, paroxetine adjOR 1.53, 95 % CI 0.91-2.58) and with severe CHD (adjOR 1.56, 95 % CI 1.02-2.39), particularly Tetralogy of Fallot (adjOR 3.16, 95 % CI 1.52-6.58) and Ebstein's anomaly (adjOR 8.23, 95 % CI 2.92-23.16). Significant associations with SSRI exposure were also found for ano-rectal atresia/stenosis (adjOR 2.46, 95 % CI 1.06-5.68), gastroschisis (adjOR 2.42, 95 % CI 1.10-5.29), renal dysplasia (adjOR 3.01, 95 % CI 1.61-5.61), and clubfoot (adjOR 2.41, 95 % CI 1.59-3.65). These data support a teratogenic effect of SSRIs specific to certain anomalies, but cannot exclude confounding by indication or associated factors.
Resumo:
Previous studies have shown that over 40% of babies with Down syndrome have a major cardiac anomaly and are more likely to have other major congenital anomalies. Since 2000, many countries in Europe have introduced national antenatal screening programs for Down syndrome. This study aimed to determine if the introduction of these screening programs and the subsequent termination of prenatally detected pregnancies were associated with any decline in the prevalence of additional anomalies in babies born with Down syndrome. The study sample consisted of 7,044 live births and fetal deaths with Down syndrome registered in 28 European population-based congenital anomaly registries covering seven million births during 2000-2010. Overall, 43.6% (95% CI: 42.4-44.7%) of births with Down syndrome had a cardiac anomaly and 15.0% (14.2-15.8%) had a non-cardiac anomaly. Female babies with Down syndrome were significantly more likely to have a cardiac anomaly compared to male babies (47.6% compared with 40.4%, P < 0.001) and significantly less likely to have a non-cardiac anomaly (12.9% compared with 16.7%, P < 0.001). The prevalence of cardiac and non-cardiac congenital anomalies in babies with Down syndrome has remained constant, suggesting that population screening for Down syndrome and subsequent terminations has not influenced the prevalence of specific congenital anomalies in these babies.
Resumo:
BACKGROUND: Pregnant women with asthma need to take medication during pregnancy. OBJECTIVE: We sought to identify whether there is an increased risk of specific congenital anomalies after exposure to antiasthma medication in the first trimester of pregnancy. METHODS: We performed a population-based case-malformed control study testing signals identified in a literature review. Odds ratios (ORs) of exposure to the main groups of asthma medication were calculated for each of the 10 signal anomalies compared with registrations with nonchromosomal, nonsignal anomalies as control registrations. In addition, exploratory analyses were done for each nonsignal anomaly. The data set included 76,249 registrations of congenital anomalies from 13 EUROmediCAT registries. RESULTS: Cleft palate (OR, 1.63; 95% CI, 1.05-2.52) and gastroschisis (OR, 1.89; 95% CI, 1.12-3.20) had significantly increased odds of exposure to first-trimester use of inhaled β2-agonists compared with nonchromosomal control registrations. Odds of exposure to salbutamol were similar. Nonsignificant ORs of exposure to inhaled β2-agonists were found for spina bifida, cleft lip, anal atresia, severe congenital heart defects in general, or tetralogy of Fallot. None of the 4 literature signals of exposure to inhaled steroids were confirmed (cleft palate, cleft lip, anal atresia, and hypospadias). Exploratory analyses found an association between renal dysplasia and exposure to the combination of long-acting β2-agonists and inhaled corticosteroids (OR, 3.95; 95% CI, 1.99-7.85). CONCLUSIONS: The study confirmed increased odds of first-trimester exposure to inhaled β2-agonists for cleft palate and gastroschisis and found a potential new signal for renal dysplasia associated with combined long-acting β2-agonists and inhaled corticosteroids. Use of inhaled corticosteroids during the first trimester of pregnancy seems to be safe in relation to the risk for a range of specific major congenital anomalies.