171 resultados para D-glucose and N-acetylglucosamine
Resumo:
OBJECTIVES: To analyze the effect of tight glycemic control with the use of intensive insulin therapy on cerebral glucose metabolism in patients with severe brain injury. DESIGN: Retrospective analysis of a prospective observational cohort. SETTING: University hospital neurologic intensive care unit. PATIENTS: Twenty patients (median age 59 yrs) monitored with cerebral microdialysis as part of their clinical care. INTERVENTIONS: Intensive insulin therapy (systemic glucose target: 4.4-6.7 mmol/L [80-120 mg/dL]). MEASUREMENTS AND MAIN RESULTS: Brain tissue markers of glucose metabolism (cerebral microdialysis glucose and lactate/pyruvate ratio) and systemic glucose were collected hourly. Systemic glucose levels were categorized as within the target "tight" (4.4-6.7 mmol/L [80-120 mg/dL]) vs. "intermediate" (6.8-10.0 mmol/L [121-180 mg/dL]) range. Brain energy crisis was defined as a cerebral microdialysis glucose <0.7 mmol/L with a lactate/pyruvate ratio >40. We analyzed 2131 cerebral microdialysis samples: tight systemic glucose levels were associated with a greater prevalence of low cerebral microdialysis glucose (65% vs. 36%, p < 0.01) and brain energy crisis (25% vs.17%, p < 0.01) than intermediate levels. Using multivariable analysis, and adjusting for intracranial pressure and cerebral perfusion pressure, systemic glucose concentration (adjusted odds ratio 1.23, 95% confidence interval [CI] 1.10-1.37, for each 1 mmol/L decrease, p < 0.001) and insulin dose (adjusted odds ratio 1.10, 95% CI 1.04-1.17, for each 1 U/hr increase, p = 0.02) independently predicted brain energy crisis. Cerebral microdialysis glucose was lower in nonsurvivors than in survivors (0.46 +/- 0.23 vs. 1.04 +/- 0.56 mmol/L, p < 0.05). Brain energy crisis was associated with increased mortality at hospital discharge (adjusted odds ratio 7.36, 95% CI 1.37-39.51, p = 0.02). CONCLUSIONS: In patients with severe brain injury, tight systemic glucose control is associated with reduced cerebral extracellular glucose availability and increased prevalence of brain energy crisis, which in turn correlates with increased mortality. Intensive insulin therapy may impair cerebral glucose metabolism after severe brain injury.
Resumo:
We report a four-year-old African boy referred for proximal muscle weakness, fatigability and episodic limb pain. Classical causes of structural and metabolic myopathy were initially considered before clinical and biological features of vitamin D deficiency rickets were identified. Prompt treatment with vitamin D and calcium supplementation led to a complete reversal of the muscle symptoms. Rickets-associated myopathy should be included in the differential diagnosis of proximal myopathy, especially in at-risk individuals. Vitamin D deficiency and its prevention remain important health issues in industrialized countries.
Resumo:
Energy expenditure (EE) was measured by indirect calorimetry in 20 subjects (10 men and 10 women) for 30 min before and 6 h after the ingestion of a mixed meal containing 20% protein, 33% fat, and either 75 g glucose or 75 g fructose as carbohydrate source (47%). Diet-induced thermogenesis (DIT) and the rate of carbohydrate oxidation were significantly greater with fructose (12.4 +/- 0.6% and 54.8 +/- 2.1 g/6 h, respectively) than with glucose (10.7 +/- 0.7%, p less than 0.01, and 48.3 +/- 2.4 g/6 h, p less than 0.01, respectively). The DIT of male (12.1 +/- 1% and 13.9 +/- 0.8% with glucose and fructose, respectively) was greater than that of female subjects (9.2 +/- 0.7%, p less than 0.05, and 11.0 +/- 0.7%, p less than 0.05, respectively). In contrast to the glucose meal, negligible changes in plasma levels of glucose and insulin were observed with the fructose meal but plasma levels of lactate increased more with fructose than with glucose (peak values: 3.3 +/- 0.6 vs 1.5 +/- 0.1 mmol/L, respectively). When fructose provides the only carbohydrate source of a mixed meal, it induces a larger increase in carbohydrate oxidation and thermogenesis than when glucose is the carbohydrate source.
Resumo:
Abstract : The principal focus of this work was to study the molecular changes leading to the development of diabetic peripheral neuropathy (DPN). DPN is the most common complication associated with both type I and II diabetes mellitus (DM). This pathology is the leading cause of non-traumatic amputations. Even though the pathological and morphological changes underlying DPN are relatively well described, the implicated molecular mechanisms remain poorly understood. The following two approaches were developed to study the development of DPN in a rodent model of DM type I. As a first approach, we studied the implication of lipid metabolism in DPN phenotype, concentrating on Sterol Response Element Binding Protein (SREBP)-lc which is the key regulator of storage lipid metabolism. We showed that SREBP-1c was expressed in peripheral nerves and that its expression profile followed the expression of genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurium of peripheral nerves was dependant upon nutritional status and this expression was also perturbed in type I diabetes. In line with this, we showed that insulin elevated the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type I diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of DPN. As a second approach, we performed a comprehensive analysis of the molecular changes associated with DPN in the Akital~1~+ mouse which is a model of spontaneous early-onset type I diabetes mellitus. This mouse expresses a mutated non-functional isoform of insulin, leading to hypoinsulinemia and hyperglycaemia. To determine the onset of DPN, weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Akital+/+ mice during the first three months of life. A decrease in MNCV was evident akeady one week after the onset of hyperglycemia. To explore the molecular changes associated with the development of DPN in these mice, we performed gene expression profiling using sciatic nerve endoneurium and dorsal root ganglia (DRG) isolated from early diabetic male Akita+/+ mice and sex-matched littermate controls. No major transcriptional changes were detected either in the DRG or in the sciatic nerve endoneurium. This experiment indicates that the phenotypic changes observed during the development of DPN are not correlated with major transcriptional alterations, but mainly with alterations at the protein level. Résumé Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1 c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita+/+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique. Résumé : Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita~~Z~+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique.
Resumo:
Consumption of simple carbohydrates has markedly increased over the past decades, and may be involved in the increased prevalence in metabolic diseases. Whether an increased intake of fructose is specifically related to a dysregulation of glucose and lipid metabolism remains controversial. We therefore compared the effects of hypercaloric diets enriched with fructose (HFrD) or glucose (HGlcD) in healthy men. Eleven subjects were studied in a randomised order after 7 d of the following diets: (1) weight maintenance, control diet; (2) HFrD (3.5 g fructose/kg fat-free mass (ffm) per d, +35 % energy intake); (3) HGlcD (3.5 g glucose/kg ffm per d, +35 % energy intake). Fasting hepatic glucose output (HGO) was measured with 6,6-2H2-glucose. Intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured by 1H magnetic resonance spectroscopy. Both fructose and glucose increased fasting VLDL-TAG (HFrD: +59 %, P < 0.05; HGlcD: +31 %, P = 0.11) and IHCL (HFrD: +52 %, P < 0.05; HGlcD: +58 %, P = 0.06). HGO increased after both diets (HFrD: +5 %, P < 0.05; HGlcD: +5 %, P = 0.05). No change was observed in fasting glycaemia, insulin and alanine aminotransferase concentrations. IMCL increased significantly only after the HGlcD (HFrD: +24 %, NS; HGlcD: +59 %, P < 0.05). IHCL and VLDL-TAG were not different between hypercaloric HFrD and HGlcD, but were increased compared to values observed with a weight maintenance diet. However, glucose led to a higher increase in IMCL than fructose.
Resumo:
Glial cells are increasingly recognized as active players that profoundly influence neuronal synaptic transmission by specialized signaling pathways. In particular, astrocytes have been shown recently to release small molecules, such as the amino acids l-glutamate and d-serine as "gliotransmitters," which directly control the efficacy of adjacent synapses. However, it is still controversial whether gliotransmitters are released from a cytosolic pool or by Ca(2+)-dependent exocytosis from secretory vesicles, i.e., by a mechanism similar to the release of synaptic vesicles in synapses. Here we report that rat cortical astrocytes contain storage vesicles that display morphological and biochemical features similar to neuronal synaptic vesicles. These vesicles share some, but not all, membrane proteins with synaptic vesicles, including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) synaptobrevin 2, and contain both l-glutamate and d-serine. Furthermore, they show uptake of l-glutamate and d-serine that is driven by a proton electrochemical gradient. d-Serine uptake is associated with vesicle acidification and is dependent on chloride. Whereas l-serine is not transported, serine racemase, the synthesizing enzyme for d-serine, is anchored to the membrane of the vesicles, allowing local generation of d-serine. Finally, we reveal a previously unexpected mutual vesicular synergy between d-serine and l-glutamate filling in glia vesicles. We conclude that astrocytes contain vesicles capable of storing and releasing d-serine, l-glutamate, and most likely other neuromodulators in an activity-dependent manner.
Resumo:
Glucose is an important signal that regulates glucose and energy homeostasis but its precise physiological role and signaling mechanism in the brain are still uncompletely understood. Over the recent years we have investigated the possibility that central glucose sensing may share functional similarities with glucose sensing by pancreatic beta-cells, in particular a requirement for the expression of the glucose transporter Glut2. Using mice with genetic inactivation of Glut2, but rescued pancreatic beta-cell function by transgenic expression of a glucose transporter, we have established that extrapancreatic glucose sensors are involved: i) in the control of glucagon secretion in response to hypoglycemia, ii) in the control of feeding and iii) of energy expenditure. We have more recently shown that central Glut2-dependent glucose sensors are involved in the regulation of NPY and POMC expression by arcuate nucleus neurons and that the sensitivity to leptin of these neurons is enhanced by Glut2-dependent glucose sensors. Using mice with genetic tagging of Glut2-expressing cells, we determined that the NPY and POMC neurons did not express Glut2 but were connected to Glut2 expressing neurons located most probably outside of the arcuate nucleus. We are now defining the electrophysiological behavior of these Glut2 expressing neurons. Our data provide an initial map of glucose sensing neurons expressing Glut2 and link these neurons with the control of specific physiological function.
Resumo:
We evaluated the role of the G alpha-q (Galphaq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Galphaq function by single cell microinjection of anti-Galphaq/11 antibody or RGS2 protein (a GAP protein for Galphaq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Galphaq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Galphaq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Galphaq (WT-Galphaq) or a constitutively active Galphaq mutant (Q209L-Galphaq) by using an adenovirus expression vector. In the basal state, Q209L-Galphaq expression stimulated 2-deoxy-D-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Galphaq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Galphaq stimulates PI3-kinase activity in p110alpha and p110gamma immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110alpha by 10-fold. Nevertheless, only microinjection of anti-p110alpha (and not p110gamma) antibody inhibited both insulin- and Q209L-Galphaq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Galphaq are dependent on the p110alpha subunit of PI3-kinase. In summary, (i) Galphaq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Galphaq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Galphaq can transmit signals from the insulin receptor to the p110alpha subunit of PI3-kinase, which leads to GLUT4 translocation.
Resumo:
OBJECTIVE: To evaluate the effects of nutrient intake and vitamin D status on markers of type I collagen formation and degradation in adolescent boys and girls. DESIGN: Cross-sectional study. SETTING: Canton of Vaud, West Switzerland. SUBJECTS: A total of 92 boys and 104 girls, aged 11-16 y. Data were collected on height, weight, pubertal status (self-assessment of Tanner stage), nutrient intake (3-day dietary record) and fasting serum concentration of 25-hydroxyvitamin D (25OHD), and markers of collagen formation (P1NP) and degradation (serum C-terminal telopeptides: S-CTX). RESULTS: Tanner stage was a significant determinant of P1NP in boys and girls and S-CTX in girls. Of the nutrients examined, only the ratio of calcium to phosphorus (Ca/P) was positively associated with P1NP in boys, after adjustment for pubertal status. 25OHD decreased significantly at each Tanner stage in boys. Overall, 15% of boys and 17% of girls were identified as being vitamin D insufficient (serum 25OHD <30 nmol/l), with the highest proportion of insufficiency at Tanner stage 4-5 (29%) in boys and at Tanner stage 3 (24%) in girls. A significant association was not found between 25OHD and either bone turnover marker, nor was 25OHD insufficiency associated with higher concentrations of the bone turnover markers. CONCLUSIONS: The marked effects of puberty on bone metabolism may have obscured any possible effects of diet and vitamin D status on markers of bone metabolism. The mechanistic basis for the positive association between dietary Ca/P ratio and P1NP in boys is not clear and may be attributable to a higher Ca intake per se, a critical balance between Ca and P intake or higher dairy product consumption. A higher incidence of vitamin D insufficiency in older adolescents may reflect a more sedentary lifestyle or increased utilisation of 25OHD, and suggests that further research is needed to define their requirements. SPONSORSHIP: Nestec Ltd and The Swiss Foundation for Research in Osteoporosis.
Resumo:
BACKGROUND: We report a patient with a highly unusual presentation of a mitochondrial disorder. HISTORY AND SIGNS: An 8-year old girl presented with muscular cramps as well as height and weight deceleration. Investigations revealed lactic acidosis, electrolytic imbalance and urinary loss of glucose and electrolytes secondary to proximal renal tubulopathy consistent with Fanconi syndrome (FS). Ophthalmic examination revealed asymptomatic retinitis pigmentosa (RP) with no other ocular manifestations. A mitochondriopathy was suspected and genetic analysis performed. THERAPY AND OUTCOME: Southern blotting documented a heteroplasmic mutation of mtDNA with deletion/duplication. Three discrete mitochondrial genomes were detected: normal; deletion of 6.7 kb and a deletion/duplication consisting of 1 normal and 1 deleted genome. The relative proportions varied considerably between tissues. CONCLUSIONS: The association of FS and RP combines features of Kearns-Sayre syndrome and Pearson marrow-pancreas syndrome, without being typical of either. This highly unusual clinical presentation emphasises the need for systemic investigation of patients with FS and further underlines the importance of mtDNA analysis in patients with unexpected associations of affected tissues.
Resumo:
The aim of this study was to identify medico-legal situations characterized by increased vitreous glucose concentrations, potentially lethal blood 3-hydroxybutyrate levels and conditions that could either incapacitate or lead to death on their own. The above was investigated in order to verify whether prolonged states of unconsciousness may play a role in precipitating diabetic ketoacidosis. Six groups of medico-legal situations (corresponding to 206 autopsy cases) were identified. Among these, three cases were characterized by pathologically increased vitreous glucose and blood 3-hydroxybutyrate levels. In one case diabetic ketoacidosis coexisted with underlying features that might have potentially incapacitated or lead to death on their own, whereas in two cases it corresponded with potentially lethal or lethal drug concentrations. The results of this study highlight the usefulness of systematically performing biochemistry in order to identify diabetic ketoacidosis-related deaths, even when autopsy and toxicology results provide apparently conclusive findings.
Resumo:
SUMMARY : Peroxisome proliferator-activated receptor ß/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in various organs, including muscle, adipose tissue and liver. However, nothing is known about the function of PPARß in pancreas, a prime organ in the control of glucose homeostasis. To gain insight into so far hypothetical functions of this PPAR isotype in ß-cell function, we specifically ablated Pparß in the whole epithelial compartment of the pancreas. The mutated mice presented expanded ß-cell mass, possibly, this is due to increased burst of ß-cell proliferation at 2 weeks of age. These PPARß null pancreas mice exhibit hyperinsulinemia-hypoglycaemia starting at 4 weeks of age, due to hyperfunctionality of ß-cell. Gene expression profiling indicated a broad repressive function of PPARß impacting the vesicular and granular compartment, actin cytoskeleton, and metabolism of glucose and fatty acids. Analyses of insulin release from isolated islets revealed accelerated second-phase of glucose-stimulated insulin secretion. Higher levels of PKD and PKCS in mutated animals, in concert with F-actin disassembly, lead to an increased insulin secretion and its associated systemic effects. Enhanced palmitate potentiation of glucose-stimulated insulin secretion in PPARß mutant islets, suggests an important role of this receptor in lipid/glucose metabolism in ß-cell. Taken together, these results provide evidence for PPARß playing a repressive role on ß-cell growth and insulin exocytosis, and shed new light on its metabolic .action. RESUME : Le récepteur nucléaire PPARß (Peroxisome proliferator-activated receptor ß/δ) protège contre l'obésité en réduisant la dyslipidémie et la résistance à l'insuline dans différents organes, comme le muscle, le tissue adipeux et le foie. Cependant, il y a, à ce jour, très peu de connaissance par rapport au rôle de PPARß dans le pancréas, qui est un organe très important dans le contrôle homéostatique du glucose. Afin de comprendre le rôle de cet isotype de PPAR dans le fonctionnement des cellules beta du pancréas, nous avons invalidé le gène Pparß dans tout le compartiment pancréatique de la souris. Ces souris mutantes présentent une augmentation de la masse totale de cellules beta; Cela serait dû à une intense prolifération des cellules beta à 2 semaines après la naissance. Également, ces souris présentent une hyperinsulinémie et une hypoglycémie qui commencent à l'âge de 4 semaines; la raison de ce phénotype serait une hyperactivité des cellules beta. Le profil d'expression génique indique une fonction répressive globale de PPARß en se référant aux compartiments vésiculaire et granulaire, au cytosquelette d'actine, et au métabolisme du glucose et des acides gras. L'analyse de la sécrétion d'insuline par les cellules beta a démontré que la deuxième phase de sécrétion d'insuline après stimulation au glucose est augmentée. Les niveaux élevés de PKD et PKCS dans les îlots pancréatiques de souris mutantes, ainsi qu'une augmentation de la dépolymérisation des filaments d'active génèrent un surplus de sécrétion d'insuline après stimulation au glucose. Les îlots pancréatiques des souris mutantes secrètent plus d'insuline après stimulation au glucose et au palmitate que les îlots de souris contrôles. Ceci suggère un rôle important de PPARß dans le métabolisme des lipides et du glucose des cellules beta. En résumé, ces résultats mettent en évidence un rôle répressif de PPARß dans la croissance des cellules beta et dans l'exocytose d'insuline.
Resumo:
BACKGROUND: Low vitamin D status has been associated with an increased risk of developing type 2 diabetes and insulin resistance (IR), although this has been recently questioned. OBJECTIVE: We examined the association between serum vitamin D metabolites and incident IR. METHODS: This was a prospective, population-based study derived from the CoLaus (Cohorte Lausannoise) study including 3856 participants (aged 51.2 ± 10.4 y; 2217 women) free from diabetes or IR at baseline. IR was defined as a homeostasis model assessment (HOMA) index >2.6. Fasting plasma insulin and glucose were measured at baseline and at follow-up to calculate the HOMA index. The association of vitamin D metabolites with incident IR was analyzed by logistic regression, and the results were expressed for each independent variable as ORs and 95% CIs. RESULTS: During the 5.5-y follow-up, 649 (16.9%) incident cases of IR were identified. Participants who developed IR had lower baseline serum concentrations of 25-hydroxyvitamin D3 [25(OH)D3 (25-hydroxycholecalciferol); 45.9 ± 22.8 vs. 49.9 ± 22.6 nmol/L; P < 0.001], total 25(OH)D3 (25(OH)D3 + epi-25-hydroxyvitamin D3 [3-epi-25(OH)D3]; 49.1 ± 24.3 vs. 53.3 ± 24.1 nmol/L; P < 0.001), and 3-epi-25(OH)D3 (4.2 ± 2.9 vs. 4.3 ± 2.5 nmol/L; P = 0.01) but a higher 3-epi- to total 25(OH)D3 ratio (0.09 ± 0.05 vs. 0.08 ± 0.04; P = 0.007). Multivariable analysis adjusting for month of sampling, age, and sex showed an inverse association between 25(OH)D3 and the likelihood of developing IR [ORs (95% CIs): 0.86 (0.68, 1.09), 0.60 (0.46, 0.78), and 0.57 (0.43, 0.75) for the second, third, and fourth quartiles compared with the first 25(OH)D3 quartile; P-trend < 0.001]. Similar associations were found between total 25(OH)D3 and incident IR. There was no significant association between 3-epi-25(OH)D3 and IR, yet a positive association was observed between the 3-epi- to total 25(OH)D3 ratio and incident IR. Further adjustment for body mass index, sedentary status, and smoking attenuated the association between 25(OH)D3, total 25(OH)D3, and the 3-epi- to total 25(OH)D3 ratio and the likelihood of developing IR. CONCLUSION: In the CoLaus study in healthy adults, the risk of incident IR is not associated with serum concentrations of 25(OH)D3 and total 25(OH)D3.
Resumo:
ABSTRACT: A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice.
Resumo:
BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.