131 resultados para Cyber-Dating
Resumo:
For the first time, an albite orthogneiss has been recognised and dated within the HP-LT blueschist facies metabasites and metapelites of the Ile de Groix. It is characterised by a peraluminous composition, high LILE, Th and U contents, MORB-like HREE abundances and moderate Nb and Y values. A U-Pb age of 480.8 +/- A 4.8 Ma was obtained by LA-ICP-MS dating of zircon and titanite. It is interpreted as the age of the magmatic emplacement during the Early Ordovician. Morphologically different zircon grains yield late Neoproterozoic ages of 546.6-647.4 Ma. Zircon and titanite U-Pb ages indicate that the felsic magmatism from the Ile de Groix is contemporaneous with the acid, pre-orogenic magmatism widely recognised in the internal zones of the Variscan belt, related to the Cambro-Ordovician continental rifting. The magmatic protolith probably inherited a specific chemical composition from a combination of orogenic, back-arc and anorogenic signatures because of partial melting of the Cadomian basement during magma emplacement. Besides, the late Devonian U-Pb age of 366 +/- A 33 Ma obtained for titanite from a blueschist facies metapelite corresponds to the age of the HP-LT peak metamorphism.
Resumo:
Determining the time since deposition of fingermarks may prove necessary to assess their relevance to criminal investigations. The crucial factor is the initial composition of fingermarks, because it represents the starting point of any aging model. This study mainly aimed to characterize the initial composition of fingerprints, which show a high variability between donors (inter-variability), but also to investigate the variations among fingerprints from the same donor (intra-variability). Solutions to reduce this initial variability using squalene and cholesterol as target compounds are proposed and should be further investigated. The influence of substrates was also evaluated, and the initial composition was observed to be larger on porous surface than nonporous surfaces. Preliminary aging of fingerprints over 30 days was finally studied on a porous and a nonporous substrate to evaluate the potential for dating of fingermarks. Squalene was observed to decrease in a faster rate on a nonporous substrate.
Resumo:
L'a. cherche à dater l'historiographie deutéronomiste et à établir une transformation à l'intérieur de cette historiographie. Les écrits de propagande de l'époque de Josias (Rois, Deutéronome, Josué, Exode et Nombres) ont été changés après la catastrophe de 597/87 en récit historique prenant une distance et présentant la Tora prenant la relève de l'autorité perdue du Temple. L'A. peut ainsi pencher pour une rédaction de ce courant historiographique datant de l'époque post-éxilique.
Resumo:
Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous. Distribution of Gesneriaceae in the Palaeotropics and Australasia was inferred as resulting from two independent long-distance dispersals during the Eocene and Oligocene, respectively. In a short time span starting at 34 Mya, ancestors of Gesnerioideae colonized several Neotropical regions including the tropical Andes, Brazilian Atlantic forest, cerrado, Central America and the West Indies. Subsequent diversification within these areas occurred largely in situ and was particularly extensive in the mountainous systems of the Andes, Central America and the Brazilian Atlantic forest. Only two radiations account for 90% of the diversity of Gesneriaceae in the Brazilian Atlantic forest, whereas half of the species richness in the northern Andes and Central America originated during the last 10 Myr from a single radiation.
Resumo:
Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.
Resumo:
We present a new model to explain the origin, emplacement and stratigraphy of the Nicoya Complex in the NW part of the Nicoya Peninsula (Costa Rica) based on twenty-five years of field work, accompanied with the evolution of geochemical, vulcanological, petrological, sedimentological and paleontological paradigms. The igneous-sedimentary relation, together with radiolarian biochronology of the NW-Nicoya Peninsula is re-examined. We interpret the Nicoya Complex as a cross-section of a fragment of the Late Cretaceous Caribbean Plateau, in which the deepest levels are exposed in the NW-Nicoya Peninsula. Over 50% of the igneous rocks are intrusive (gabbros and in less proportion plagiogranites) which have a single mantle source; the remainder are basalts with a similar geochemical signature. Ar39/Ar40 radioisotopic whole rock and plagioclase ages range throughout the area from 84 to 83 Ma (Santonian) for the intrusives, and from 139 to 88 Ma (Berriasian-Turonian) for the basalts. In contrast, Mn-radiolarites that crop out in the area are older in age, Bajocian (Middle Jurassic) to Albian (middle Cretaceous). These Mn-radiolaritic blocks are set in a "matrix" of multiple gabbros and diabases intrusions. Chilled margins of magmatites, and hydrothermal baking and leaching of the radiolarites confirm the Ar39/Ar40 dating of igneous rocks being consistently younger than most of the radiolarian cherts. No Jurassic magmatic basement has been identified on the Nicoya Peninsula. We interpret the Jurassic-Cretaceous chert sediment pile to have been disrupted and detached from its original basement by multiple magmatic events that occurred during the formation of the Caribbean Plateau. Coniacian-Santonian (Late Cretaceous), Fe-rich radiolarites are largely synchronous and associated with late phases of the Plateau.
Resumo:
subsequent extension-induced exhumation. Geochronological dating of various Structural, thermobarometric, and geochronological data place limits on the age and tectonic displacement along the Zanskar shear zone, a major north-dipping synorogenic extensional structure separating the high-grade metamorphic sequence of the High Himalayan Crystalline Sequence from the overlying low-grade sedimentary rocks of the Tethyan Himalaya, A complete Barrovian metamorphic succession, from kyanite to biotite zone mineral assemblages, occurs within the I-km-thick Zanskar shear zone. Thermobarometric data indicate a difference In equilibration depths of 12 +/- 3 km between the lower kyanite zone and the garnet zone, which is Interpreted as a minimum estimate for the finite vertical displacement accommodated by the Zanskar shear zone. For the present-day dip of the structure (20 degrees), a simple geometrical model shows that a net slip of 35 +/- 9 km is required to regroup these samples to the same structural level. Because the kyanite to garnet zone rocks represent only part of the Zanskar shear zone, and because its original dip may have been less than the present-day dip, these estimates fur the finite displacement represent minimum values. Field relations and petrographic data suggest that migmatization and associated leucogranite intrusion in the footwall of the Zanskar shear zone occurred as a continuous profess starting at the Barrovian metamorphic peak and lasting throughout the subsequent extension-induced exhumation. Geochronological dataing of various leucogranitic plutons and dikes in the Zanskar shear zone footwall indicates that the main ductile shearing along the structure ended by 19.8 Ma and that extension most likely initiated shortly before 22.2 Ma.
Resumo:
Background and Aims Paleoclimatic data indicate that an abrupt climate change occurred at the Eocene-Oligocene (E-O) boundary affecting the distribution of tropical forests on Earth. The same period has seen the emergence of South-East (SE) Asia, caused by the collision of the Eurasian and Australian plates. How the combination of these climatic and geomorphological factors affected the spatio-temporal history of angiosperms is little known. This topic is investigated by using the worldwide sapindaceous clade as a case study. Methods Analyses of divergence time inference, diversification and biogeography (constrained by paleogeography) are applied to a combined plastid and nuclear DNA sequence data set. Biogeographical and diversification analyses are performed over a set of trees to take phylogenetic and dating uncertainty into account. Results are analysed in the context of past climatic fluctuations. Key Results An increase in the number of dispersal events at the E-O boundary is recorded, which intensified during the Miocene. This pattern is associated with a higher rate in the emergence of new genera. These results are discussed in light of the geomorphological importance of SE Asia, which acted as a tropical bridge allowing multiple contacts between areas and additional speciation across landmasses derived from Laurasia and Gondwana. Conclusions This study demonstrates the importance of the combined effect of geomorphological (the emergence of most islands in SE Asia approx. 30 million years ago) and climatic (the dramatic E-O climate change that shifted the tropical belt and reduced sea levels) factors in shaping species distribution within the sapindaceous clade.
Resumo:
Depuis la parution des Überlieferungsgeschitliche Studien de Martin Noth, le livre du Deutéronome joue un rôle central dans la discussion exégétique. L'A. cherche à faire le point sur le chemin parcouru depuis cinquante ans. Au niveau diachronique, aucun consensus n'apparaît sur les questions de la datation et des rédactions successives. Le modèle le plus performant semble être Deutéronome primitif sous Josias suivi à l'époque de l'exil de son insertion dans l'historiographie, puis de plusieurs retouches rédactionnelles. Au niveau théologique, les thèmes de la loi, de l'alliance, du pays, de l'exode et des pères en sont l'épine dorsale
Resumo:
New precise zircon U-Pb ages are proposed for the Triassic-Jurassic (Rhetian-Hettangian) and the Hettangian-Sinemurian boundaries, The ages were obtained by ID-TIMS dating of single chemical-abraded zircons from volcanic ash layers within the Pucara Group, Aramachay Formation in the Utcubamba valley, northern Peru. Ash layers situated between last and first occurrences of boundary-defining ammonites yielded Pb-206/U-238 ages of 201.58 +/- 0.17/0.28 Ma (95% c.l., uncertainties without/with decay constant errors, respectively) for the Triassic-Jurassic and of 199.53 +/- 0.19/0.29 Ma for the Hettangian-Sinemurian boundaries. The former is established on a tuff located 1 m above the last local occurrence of the topmost Triassic genus Choristoceras, and 5 m below the Hettangian genus Psiloceras. The latter sample was obtained from a tuff collected within the Badouxia canadensis beds. Our new ages document total duration of the Hettagian of no more than c. 2 m.y., which has fundamental implications for the interpretation and significance of the ammonite recovery after the topmost Triassic extinction. The U-Pb age is about 0.8 +/- 0.5% older than Ar-40-Ar-39 dates determined on flood basalts of the Central Atlantic Magmatic Province (CAMP). Given the widely accepted hypothesis that inaccuracies in the K-40 decay constants or physical constants create a similar bias between the two dating methods, our new U-Pb zircon age determination for the T/J boundary corroborates the hypothesis that the CAMP was emplaced at the same time and may be responsible for a major climatic turnover and mass extinction. The zircon Pb-206/U-238 age for the T/J boundary is marginally older than the North Mountain Basalt (Newark Supergroup, Nova Scotia, Canada), which has been dated at 201.27 +/- 0.06 Ma [Schoene et al., 2006. Geochim. Cosmochim. Acta 70, 426-445]. It will be important to look for older eruptions of the CAMP and date them precisely by U-Pb techniques while addressing all sources of systematic uncertainty to further test the hypothesis of volcanic induced climate change leading to extinction. Such high-precision, high-accuracy data will be instrumental for constraining the contemporaneity of geological events at a 100 kyr level. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
C(4) photosynthesis is an adaptive trait conferring an advantage in warm and open habitats. It originated multiple times and is currently reported in 18 plant families. It has been recently shown that phosphoenolpyruvate carboxylase (PEPC), a key enzyme of the C(4) pathway, evolved through numerous independent but convergent genetic changes in grasses (Poaceae). To compare the genetics of multiple C(4) origins on a broader scale, we reconstructed the evolutionary history of the C(4) pathway in sedges (Cyperaceae), the second most species-rich C(4) family. A sedge phylogeny based on two plastome genes (rbcL and ndhF) has previously identified six fully C(4) clades. Here, a relaxed molecular clock was used to calibrate this tree and showed that the first C(4) acquisition occurred in this family between 19.6 and 10.1 Ma. According to analyses of PEPC-encoding genes (ppc), at least five distinct C(4) origins are present in sedges. Two C(4) Eleocharis species, which were unrelated in the plastid phylogeny, acquired their C(4)-specific PEPC genes from a single source, probably through reticulate evolution or a horizontal transfer event. Acquisitions of C(4) PEPC in sedges have been driven by positive selection on at least 16 codons (3.5% of the studied gene segment). These sites underwent parallel genetic changes across the five sedge C(4) origins. Five of these sites underwent identical changes also in grass and eudicot C(4) lineages, indicating that genetic convergence is most important within families but that identical genetic changes occurred even among distantly related taxa. These lines of evidence give new insights into the constraints that govern molecular evolution.
Resumo:
Phengites from the eclogite and blueschist-facies sequences of the Cycladic island of Syros (Greece) have been dated by the in situ UV-laser ablation Ar-40/Ar-39 method. A massive, phengite-rich eclogite and an omphacite-rich metagabbro were investigated. The phengites are eubedral and coarse-grained (several 100 mum), strain-free and exhibit no evidence for late brittle deformation or recrystallization. Apparent ages in these samples range from 43 to 50 Ma for the phengite-rich eclogite and 42 to 52 Ma for the ompbacitic metagabbro. This large spread of ages is visible at all scales-within individual grains as well as in domains of several 100 mum and across the entire sample (ca. 2 cm). Such variations have been traditionally attributed to metamorphic cooling or the incorporation of excess argon. However, the textural equilibrium between the phengites and other high pressure phases and the subtle compositional variations within the phengites, especially the preservation of growth textures, alternatively suggest that the observed range in ages may reflect variations of radiogenic argon acquired during phengite formation and subsequent growth, thus dating a discrete event on the prograde path. This implies that the oldest phengite 40Ar/39Ar ages provide the best estimate of a minimum crystallization age, which is in agreement with recently reported U-Pb and Lu-Hf geochronological data. Our results are consistent with available stable isotope data and further suggest that, under fluid-restricted conditions, both stable and radiogenic isotopic systems can survive without significant isotopic exchange during subduction and exhumation from eclogite-facies P-T conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The sandstone-hosted Beverley uranium deposit is located in terrestrial sediments in the Lake Frome basin in the North Flinders Ranges, South Australia. The deposit is 13 km from the U-rich Mesoproterozoic basement of the Mount Painter inlier, which is being uplifted 100 to 200 m above the basin by neotectonic activity that probably initiated in the early Pliocene. The mineralization was deposited mainly in organic matter-poor Miocene lacustrine sands and partly in the underlying reductive strata comprising organic matter-rich clays and silts. The bulk of the mineralization consists of coffinite and/or uraninite nodules, growing around Co-rich pyrite with an S isotope composition (delta S-34 = 1.0 +/- 0.3 parts per thousand), suggestive of an early diagenetic lacustrine origin. In contrast, authigenic sulfides in the bulk of the sediments have a negative S isotope signature (delta S-34 ranges from -26.2 to -35.5 parts per thousand), indicative of an origin via bacterially mediated sulfate reduction. Minor amounts of Zn-bearing native copper and native lead also support the presence of specific, reducing microenvironments in the ore zone. Small amounts of carnotite are associated with the coffinite ore and also occur beneath a paleosoil horizon overlying the uranium deposit. Provenance studies suggest that the host Miocene sediments were derived from the reworking of Early Cretaceous glacial or glaciolacustrine sediments ultimately derived from Paleozoic terranes in eastern Australia. In contrast, the overlying Pliocene strata were in part derived from the Mesoproterozoic basement inlier. Mass-balance and geochemical data confirm that granites of the Mount Painter domain were the ultimate source of U and BEE at Beverley. U-Pb dating of coffinite and carnotite suggest that the U mineralization is Pliocene (6.7-3.4 Ma). The suitability of the Beverley deposit for efficient mining via in situ leaching, and hence its economic value, are determined by the nature of the hosting sand unit, which provides the permeability and low reactivity required for high fluid flow and low chemical consumption. These favorable sedimentologic and geometrical features result from a complex conjunction of factors, including deposition in lacustrine shore environment, reworking of angular sands of glacial origin, deep Pliocene weathering, and proximity to an active fault exposing extremely U rich rocks.
Resumo:
Les laves torrentielles sont l'un des vecteurs majeurs de sédiments en milieu montagneux. Leur comportement hydrogéomorphologique est contrôlé par des facteurs géologique, géomorphologique, topographique, hydrologique, climatique et anthropique. Si, en Europe, la recherche s'est plus focalisée sur les aspects hydrologiques que géomorphologiques de ces phénomènes, l'identification des volumes de sédiments potentiellement mobilisables au sein de petits systèmes torrentiels et des processus responsables de leur transfert est d'une importance très grande en termes d'aménagement du territoire et de gestion des dangers naturels. De plus, une corrélation entre des événements pluviométriques et l'occurrence de laves torrentielles n'est pas toujours établie et de nombreux événements torrentiels semblent se déclencher lorsqu'un seuil géomorphologique intrinsèque (degré de remplissage du chenal) au cours d'eau est atteint.Une méthodologie pragmatique a été développée pour cartographier les stocks sédimentaires constituant une source de matériaux pour les laves torrentielles, comme outil préliminaire à la quantification des volumes transportés par ces phénomènes. La méthode s'appuie sur des données dérivées directement d'analyses en environnement SIG réalisées sur des modèles numériques d'altitude de haute précision, de mesures de terrain et d'interprétation de photographies aériennes. La méthode a été conçue pour évaluer la dynamique des transferts sédimentaires, en prenant en compte le rôle des différents réservoirs sédimentaires, par l'application du concept de cascade sédimentaire sous un angle cartographique.Les processus de transferts sédimentaires ont été étudiés dans deux bassins versants des Alpes suisses (torrent du Bruchi, à Blatten beiNaters et torrent du Meretschibach, à Agarn). La cartographie géomorphologique a été couplée avec des mesures complémentaires permettant d'estimer les flux sédimentaires et les taux d'érosion (traçages de peinture, piquets de dénudation et utilisation du LiDAR terrestre). La méthode proposée se révèle innovatrice en comparaison avec la plupart des systèmes de légendes géomorphologiques existants, qui ne sont souvent pas adaptés pour cartographier de manière satisfaisante les systèmes géomorphologiques complexes et actifs que sont les bassins torrentiels. L'intérêt de cette méthode est qu'elle permet l'établissement d'une cascade sédimentaire, mais uniquement pour des systèmes où l'occurrence d'une lave torrentielle est contrôlé par le degré de remplissage en matériaux du chenal. Par ailleurs, le produit cartographique ne peut être directement utilisé pour la création de cartes de dangers - axées sur les zones de dépôt - mais revêt un intérêt pour la mise en place de mesures de correction et pour l'installation de systèmes de monitoring ou d'alerte.La deuxième partie de ce travail de recherche est consacrée à la cartographie géomorphologique. Une analyse a porté sur un échantillon de 146 cartes ou systèmes de légende datant des années 1950 à 2009 et réalisés dans plus de 40 pays. Cette analyse a permis de mettre en évidence la diversité des applications et des techniques d'élaboration des cartes géomorphologiques. - Debris flows are one of the most important vectors of sediment transfer in mountainous areas. Their hydro-geomorphological behaviour is conditioned by geological, geomorphological, topographical, hydrological, climatic and anthropic factors. European research in torrential systems has focused more on hydrological processes than on geomorphological processes acting as debris flow triggers. Nevertheless, the identification of sediment volumes that have the potential to be mobilised in small torrential systems, as well as the recognition of processes responsible for their mobilisation and transfer within the torrential system, are important in terms of land-use planning and natural hazard management. Moreover, a correlation between rainfall and debris flow occurrence is not always established and a number of debris flows seems to occur when a poorly understood geomorphological threshold is reached.A pragmatic methodology has been developed for mapping sediment storages that may constitute source zone of bed load transport and debris flows as a preliminary tool before quantifying their volumes. It is based on data directly derived from GIS analysis using high resolution DEM's, field measurements and aerial photograph interpretations. It has been conceived to estimate sediment transfer dynamics, taking into account the role of different sediment stores in the torrential system applying the concept of "sediment cascade" in a cartographic point of view.Sediment transfer processes were investigated in two small catchments in the Swiss Alps (Bruchi torrent, Blatten bei Naters and Meretschibach torrent, Agarn). Thorough field geomorphological mapping coupled with complementary measurements were conducted to estimate sediment fluxes and denudation rates, using various methods (reference coloured lines, wooden markers and terrestrial LiDAR). The proposed geomorphological mapping methodology is quite innovative in comparison with most legend systems that are not adequate for mapping active and complex geomorphological systems such as debris flow catchments. The interest of this mapping method is that it allows the concept of sediment cascade to be spatially implemented but only for supply-limited systems. The map cannot be used directly for the creation of hazard maps, focused on the deposition areas, but for the design of correction measures and the implementation of monitoring and warning systems.The second part of this work focuses on geomorphological mapping. An analysis of a sample of 146 (extracts of) maps or legend systems dating from the middle of the 20th century to 2009 - realised in more than 40 different countries - was carried out. Even if this study is not exhaustive, it shows a clear renewed interest for the discipline worldwide. It highlights the diversity of applications, techniques (scale, colours and symbology) used for their conception.
Resumo:
The Monte San Giorgio (Southern Alps, Ticino, Switzerland) is the most important locality in the world for vertebrates dating back to the Middle Triassic. For this reason it was registered in 2003 as a UNESCO World Heritage Site. One of the objectives of this doctoral thesis was to fill some of the cognitive gaps regarding the Ladinian succession, including in particular the San Giorgio Dolomite and the Meride Limestone. In order to achieve this, the entire succession, more than 600 metres thick, was measured and sampled. Biostratigraphic research based on new finds of fossil invertebrates and microfossils and on the palynological analysis of the entire section was integrated with single-zircon U-Pb dating of volcanic ash layers intercalated in the carbonate succession. This enabled a redefinition of the bio-chronostratigraphic and geochronologic framework of the succession, which encompasses a significantly shorter time interval than previously held. The Ladinian section extends from the E. curionii Ammonoid Zone (Early Fassanian) to the P. archelaus Ammonoid Zone (Early Longobardian). The age of the classic fossiliferous levels of the Meride Limestone, rich in organic matter and containing vertebrate fossils which are known all over the world, was defined in both biostratigraphic and geochronologic terms. The presumed stratigraphie significance of the pachypleurosaurid reptiles found in such levels is called into question by new finds. These fossiliferous horizons were found to correspond to the main volcanoclastic intervals of the Buchenstein Formation (Middle and Upper Pietra Verde). Thus, a correlation with the Bagolino Section (Italy) containing the GSSP for the base of the Ladinian was proposed. Bulk sedimentation rates in the studied succession average 200 m/Myr and therefore prove to be 20 times higher than those of the South-Alpine pelagic basins. These values express high carbonate productivity from the surrounding platforms on one hand, and on the other a marked subsidence of the basin. Only in the intervals consisting of laminated limestones did the sedimentation rates drop to average values of around 30 m/Myr. The distribution of organic and inorganic facies appears to be the consequence of relative variations in sea-level. The laminated and organic-matter- rich intervals of the Meride Limestone are linked to a relative sea-level drop which favoured dysoxic to anoxic bottom-water conditions, coupled with an increase in runoff, perhaps due to recurrent explosive volcanic activity. The transient development under dysoxic conditions of monospecific benthic meio-/macrofaunas was documented. Organic matter suggests a predominant origin due to benthic bacterial activity, as can be witnessed in alveolar structures typical of exopolymeric substances secreted by bacteria within microbial mats. A microbial contribution to the carbonate (peloidal) precipitation was documented. The protective effect exerted by these microbial mats is also indicated as the main taphonomic factor contributing to the excellent preservation of vertebrate fossils. A radiolarian assemblage discovered in the lower part of the section (earliest Ladinian, E. curionii Zone) suggests the transient existence of open-marine but not deep-water connections with the tethyan pelagic basins. It shows marked similarities to the faunas typical of the late Anisian, suggesting therefore a low resolution power provided by radiolarian biostratigraphy in recognizing the Anisian/Ladinian boundary. The present thesis describes a new species of conifer (Elatocladus cassinae), a new species of insect (Dasyleptus triassicus) and seven new species of radiolarians (Eptingium danieli, Eptingium neriae, Parentactinosphaera eoladinica, Sepsagon ticinensis, Sepsagon? valporinae, Novamuria wirzi and Pessagnollum? hexaspinosum). In addition, following revision of the type material of already existent taxa, four new genera of radiolarians are introduced: Bernoulliella, Eohexastylus, Ticinosphaera and Lahmosphaera.