77 resultados para Continuous Casting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Obstructive sleep apnea syndrome (OSA) increases the risk of cardiovascular disease. We aimed at evaluating the effect of continuous positive airway pressure (CPAP) treatment on coronary endothelium-dependent vasoreactivity in OSA patients by quantifying myocardial blood flow (MBF) response to cold pressure testing (CPT). METHODS: In the morning after polysomnography (PSG), all participants underwent a dynamic (82)Rb cardiac positron emitting tomography/computed tomography (PET/CT) scan at rest, during CPT and adenosine stress. PSG and PET/CT were repeated at least 6 weeks after initiating CPAP treatment. OSA patients were compared to controls and according to response to CPAP. Patients' characteristics and PSG parameters were used to determine predictors of CPT-MBF. RESULTS: Thirty-two untreated OSA patients (age 58 ± 13 years, 27 men) and 9 controls (age 62 ± 5 years, 4 men) were enrolled. At baseline, compared to controls (apnea-hypopnea index (AHI) = 5.3 ± 2.6/h), untreated OSA patients (AHI = 48.6 ± 19.7/h) tend to have a lower CPT-MBF (1.1 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.09). After initiating CPAP, CPT-MBF was not different between well-treated patients (AHI <10/h) and controls (1.3 ± 0.3 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.83), but it was lower for insufficiently treated patients (AHI ≥10/h) (0.9 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.0045). CPT-MBF was also higher in well-treated than in insufficiently treated patients (1.3 ± 0.3 mL/min/g vs. 0.9 ± 0.2 mL/min/g, p = 0.001). Mean nocturnal oxygen saturation (β = -0.55, p = 0.02) and BMI (β = -0.58, p = 0.02) were independent predictors of CPT-MBF in OSA patients. CONCLUSIONS: Coronary endothelial vasoreactivity is impaired in insufficiently treated OSA patients compared to well-treated patients and controls, confirming the need for CPAP optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Living bacteria or yeast cells are frequently used as bioreporters for the detection of specific chemical analytes or conditions of sample toxicity. In particular, bacteria or yeast equipped with synthetic gene circuitry that allows the production of a reliable non-cognate signal (e.g., fluorescent protein or bioluminescence) in response to a defined target make robust and flexible analytical platforms. We report here how bacterial cells expressing a fluorescence reporter ("bactosensors"), which are mostly used for batch sample analysis, can be deployed for automated semi-continuous target analysis in a single concise biochip. Escherichia coli-based bactosensor cells were continuously grown in a 13 or 50 nanoliter-volume reactor on a two-layered polydimethylsiloxane-on-glass microfluidic chip. Physiologically active cells were directed from the nl-reactor to a dedicated sample exposure area, where they were concentrated and reacted in 40 minutes with the target chemical by localized emission of the fluorescent reporter signal. We demonstrate the functioning of the bactosensor-chip by the automated detection of 50 μgarsenite-As l(-1) in water on consecutive days and after a one-week constant operation. Best induction of the bactosensors of 6-9-fold to 50 μg l(-1) was found at an apparent dilution rate of 0.12 h(-1) in the 50 nl microreactor. The bactosensor chip principle could be widely applicable to construct automated monitoring devices for a variety of targets in different environments.