145 resultados para Contextual classification
Resumo:
BACKGROUND: Extensive research exists estimating the effect hazardous alcohol¦use on morbidity and mortality, but little research quantifies the association between¦alcohol consumption and utility scores in patients with alcohol dependence.¦In the context of comparative research, the World Health Organisation (WHO)¦proposed to categorise the risk for alcohol-related acute and chronic harm according¦to patients' average daily alcohol consumption. OBJECTIVES: To estimate utility¦scores associated with each category of the WHO drinking risk-level classification¦in patients with alcohol dependence (AD). METHODS: We used data from¦CONTROL, an observational cohort study including 143 AD patients from the Alcohol¦Treatment Center at Lausanne University Hospital, followed for 12 months.¦Average daily alcohol consumption was assessed monthly using the Timeline Follow-¦back method and patients were categorised according to the WHO drinking¦risk-level classification: abstinent, low, medium, high and very high. Other measures¦as sociodemographic characteristics and utility scores derived from the EuroQoL¦5-Dimensions questionnaire (EQ-5D) were collected every three months.¦Mixed models for repeated measures were used to estimate mean utility scores¦associated with WHO drinking risk-level categories. RESULTS: A total of 143 patients¦were included and the 12-month follow-up permitting the assessment of¦1318 person-months. At baseline the mean age of the patients was 44.6 (SD 11.8)¦and the majority of patients was male (63.6%). Using repeated measures analysis,¦utility scores decreased with increasing drinking levels, ranging from 0.80 in abstinent¦patients to 0.62 in patients with very high risk drinking level (p_0.0001).¦CONCLUSIONS: In this sample of patients with alcohol dependence undergoing¦specialized care, utility scores estimated from the EQ-5D appeared to substantially¦and consistently vary according to patients' WHO drinking level.
Resumo:
CD34/QBEND10 immunostaining has been assessed in 150 bone marrow biopsies (BMB) including 91 myelodysplastic syndromes (MDS), 16 MDS-related AML, 25 reactive BMB, and 18 cases where RA could neither be established nor ruled out. All cases were reviewed and classified according to the clinical and morphological FAB criteria. The percentage of CD34-positive (CD34 +) hematopoietic cells and the number of clusters of CD34+ cells in 10 HPF were determined. In most cases the CD34+ cell count was similar to the blast percentage determined morphologically. In RA, however, not only typical blasts but also less immature hemopoietic cells lying morphologically between blasts and promyelocytes were stained with CD34. The CD34+ cell count and cluster values were significantly higher in RA than in BMB with reactive changes (p<0.0001 for both), in RAEB than in RA (p=0.0006 and p=0.0189, respectively), in RAEBt than in RAEB (p=0.0001 and p=0.0038), and in MDS-AML than in RAEBt (p<0.0001 and p=0.0007). Presence of CD34+ cell clusters in RA correlated with increased risk of progression of the disease. We conclude that CD34 immunostaining in BMB is a useful tool for distinguishing RA from other anemias, assessing blast percentage in MDS cases, classifying them according to FAB, and following their evolution.
Resumo:
BACKGROUND: Several studies have established Glioblastoma Multiforme (GBM) prognostic and predictive models based on age and Karnofsky Performance Status (KPS), while very few studies evaluated the prognostic and predictive significance of preoperative MR-imaging. However, to date, there is no simple preoperative GBM classification that also correlates with a highly prognostic genomic signature. Thus, we present for the first time a biologically relevant, and clinically applicable tumor Volume, patient Age, and KPS (VAK) GBM classification that can easily and non-invasively be determined upon patient admission. METHODS: We quantitatively analyzed the volumes of 78 GBM patient MRIs present in The Cancer Imaging Archive (TCIA) corresponding to patients in The Cancer Genome Atlas (TCGA) with VAK annotation. The variables were then combined using a simple 3-point scoring system to form the VAK classification. A validation set (N = 64) from both the TCGA and Rembrandt databases was used to confirm the classification. Transcription factor and genomic correlations were performed using the gene pattern suite and Ingenuity Pathway Analysis. RESULTS: VAK-A and VAK-B classes showed significant median survival differences in discovery (P = 0.007) and validation sets (P = 0.008). VAK-A is significantly associated with P53 activation, while VAK-B shows significant P53 inhibition. Furthermore, a molecular gene signature comprised of a total of 25 genes and microRNAs was significantly associated with the classes and predicted survival in an independent validation set (P = 0.001). A favorable MGMT promoter methylation status resulted in a 10.5 months additional survival benefit for VAK-A compared to VAK-B patients. CONCLUSIONS: The non-invasively determined VAK classification with its implication of VAK-specific molecular regulatory networks, can serve as a very robust initial prognostic tool, clinical trial selection criteria, and important step toward the refinement of genomics-based personalized therapy for GBM patients.
Resumo:
A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
La présente étude est à la fois une évaluation du processus de la mise en oeuvre et des impacts de la police de proximité dans les cinq plus grandes zones urbaines de Suisse - Bâle, Berne, Genève, Lausanne et Zurich. La police de proximité (community policing) est à la fois une philosophie et une stratégie organisationnelle qui favorise un partenariat renouvelé entre la police et les communautés locales dans le but de résoudre les problèmes relatifs à la sécurité et à l'ordre public. L'évaluation de processus a analysé des données relatives aux réformes internes de la police qui ont été obtenues par l'intermédiaire d'entretiens semi-structurés avec des administrateurs clés des cinq départements de police, ainsi que dans des documents écrits de la police et d'autres sources publiques. L'évaluation des impacts, quant à elle, s'est basée sur des variables contextuelles telles que des statistiques policières et des données de recensement, ainsi que sur des indicateurs d'impacts construit à partir des données du Swiss Crime Survey (SCS) relatives au sentiment d'insécurité, à la perception du désordre public et à la satisfaction de la population à l'égard de la police. Le SCS est un sondage régulier qui a permis d'interroger des habitants des cinq grandes zones urbaines à plusieurs reprises depuis le milieu des années 1980. L'évaluation de processus a abouti à un « Calendrier des activités » visant à créer des données de panel permettant de mesurer les progrès réalisés dans la mise en oeuvre de la police de proximité à l'aide d'une grille d'évaluation à six dimensions à des intervalles de cinq ans entre 1990 et 2010. L'évaluation des impacts, effectuée ex post facto, a utilisé un concept de recherche non-expérimental (observational design) dans le but d'analyser les impacts de différents modèles de police de proximité dans des zones comparables à travers les cinq villes étudiées. Les quartiers urbains, délimités par zone de code postal, ont ainsi été regroupés par l'intermédiaire d'une typologie réalisée à l'aide d'algorithmes d'apprentissage automatique (machine learning). Des algorithmes supervisés et non supervisés ont été utilisés sur les données à haute dimensionnalité relatives à la criminalité, à la structure socio-économique et démographique et au cadre bâti dans le but de regrouper les quartiers urbains les plus similaires dans des clusters. D'abord, les cartes auto-organisatrices (self-organizing maps) ont été utilisées dans le but de réduire la variance intra-cluster des variables contextuelles et de maximiser simultanément la variance inter-cluster des réponses au sondage. Ensuite, l'algorithme des forêts d'arbres décisionnels (random forests) a permis à la fois d'évaluer la pertinence de la typologie de quartier élaborée et de sélectionner les variables contextuelles clés afin de construire un modèle parcimonieux faisant un minimum d'erreurs de classification. Enfin, pour l'analyse des impacts, la méthode des appariements des coefficients de propension (propensity score matching) a été utilisée pour équilibrer les échantillons prétest-posttest en termes d'âge, de sexe et de niveau d'éducation des répondants au sein de chaque type de quartier ainsi identifié dans chacune des villes, avant d'effectuer un test statistique de la différence observée dans les indicateurs d'impacts. De plus, tous les résultats statistiquement significatifs ont été soumis à une analyse de sensibilité (sensitivity analysis) afin d'évaluer leur robustesse face à un biais potentiel dû à des covariables non observées. L'étude relève qu'au cours des quinze dernières années, les cinq services de police ont entamé des réformes majeures de leur organisation ainsi que de leurs stratégies opérationnelles et qu'ils ont noué des partenariats stratégiques afin de mettre en oeuvre la police de proximité. La typologie de quartier développée a abouti à une réduction de la variance intra-cluster des variables contextuelles et permet d'expliquer une partie significative de la variance inter-cluster des indicateurs d'impacts avant la mise en oeuvre du traitement. Ceci semble suggérer que les méthodes de géocomputation aident à équilibrer les covariables observées et donc à réduire les menaces relatives à la validité interne d'un concept de recherche non-expérimental. Enfin, l'analyse des impacts a révélé que le sentiment d'insécurité a diminué de manière significative pendant la période 2000-2005 dans les quartiers se trouvant à l'intérieur et autour des centres-villes de Berne et de Zurich. Ces améliorations sont assez robustes face à des biais dus à des covariables inobservées et covarient dans le temps et l'espace avec la mise en oeuvre de la police de proximité. L'hypothèse alternative envisageant que les diminutions observées dans le sentiment d'insécurité soient, partiellement, un résultat des interventions policières de proximité semble donc être aussi plausible que l'hypothèse nulle considérant l'absence absolue d'effet. Ceci, même si le concept de recherche non-expérimental mis en oeuvre ne peut pas complètement exclure la sélection et la régression à la moyenne comme explications alternatives. The current research project is both a process and impact evaluation of community policing in Switzerland's five major urban areas - Basel, Bern, Geneva, Lausanne, and Zurich. Community policing is both a philosophy and an organizational strategy that promotes a renewed partnership between the police and the community to solve problems of crime and disorder. The process evaluation data on police internal reforms were obtained through semi-structured interviews with key administrators from the five police departments as well as from police internal documents and additional public sources. The impact evaluation uses official crime records and census statistics as contextual variables as well as Swiss Crime Survey (SCS) data on fear of crime, perceptions of disorder, and public attitudes towards the police as outcome measures. The SCS is a standing survey instrument that has polled residents of the five urban areas repeatedly since the mid-1980s. The process evaluation produced a "Calendar of Action" to create panel data to measure community policing implementation progress over six evaluative dimensions in intervals of five years between 1990 and 2010. The impact evaluation, carried out ex post facto, uses an observational design that analyzes the impact of the different community policing models between matched comparison areas across the five cities. Using ZIP code districts as proxies for urban neighborhoods, geospatial data mining algorithms serve to develop a neighborhood typology in order to match the comparison areas. To this end, both unsupervised and supervised algorithms are used to analyze high-dimensional data on crime, the socio-economic and demographic structure, and the built environment in order to classify urban neighborhoods into clusters of similar type. In a first step, self-organizing maps serve as tools to develop a clustering algorithm that reduces the within-cluster variance in the contextual variables and simultaneously maximizes the between-cluster variance in survey responses. The random forests algorithm then serves to assess the appropriateness of the resulting neighborhood typology and to select the key contextual variables in order to build a parsimonious model that makes a minimum of classification errors. Finally, for the impact analysis, propensity score matching methods are used to match the survey respondents of the pretest and posttest samples on age, gender, and their level of education for each neighborhood type identified within each city, before conducting a statistical test of the observed difference in the outcome measures. Moreover, all significant results were subjected to a sensitivity analysis to assess the robustness of these findings in the face of potential bias due to some unobserved covariates. The study finds that over the last fifteen years, all five police departments have undertaken major reforms of their internal organization and operating strategies and forged strategic partnerships in order to implement community policing. The resulting neighborhood typology reduced the within-cluster variance of the contextual variables and accounted for a significant share of the between-cluster variance in the outcome measures prior to treatment, suggesting that geocomputational methods help to balance the observed covariates and hence to reduce threats to the internal validity of an observational design. Finally, the impact analysis revealed that fear of crime dropped significantly over the 2000-2005 period in the neighborhoods in and around the urban centers of Bern and Zurich. These improvements are fairly robust in the face of bias due to some unobserved covariate and covary temporally and spatially with the implementation of community policing. The alternative hypothesis that the observed reductions in fear of crime were at least in part a result of community policing interventions thus appears at least as plausible as the null hypothesis of absolutely no effect, even if the observational design cannot completely rule out selection and regression to the mean as alternative explanations.
Resumo:
Depression and suicidal ideation are tightly linked to the lack of hope in the future. Hopelessness begins with the occurrence of negative life events and develops through the perception that negative outcomes are stable and pervasive. Most of the research has investigated individual factors predicting hopelessness. However, other studies have shown that the social context may also play an important role: disadvantaged contexts exacerbate the feeling that future is unreachable and hopeless. In this study we investigate the role of shared emotions (emotional climates) on the sense of hopelessness during the second half of the life. Emotional climates have been defined as the emotional relationships constructed between members of a society and describe the quality of the environment within a particular community. We present results of multilevel analyses using data from the NCCR-LIVES769 project «Vulnerability and growth», the Swiss Household Panel and official statistics, that explore the relationship between characteristics of the Swiss cantons and hopelessness. Although hopelessness is mainly affected by individual factors as life events and personality, results show that canton socio-economic conditions and climates of optimism or pessimism have an effect on the individual perception of hopelessness. Individuals are more likely to feel hopeless after having experienced critical events (i.e., loss of the partner in the late life) in cantons with high rates of unemployment and with a high share of negative emotions. On the contrary, positive emotional climates play a protective role against hopelessness.
Resumo:
The paper deals with the development and application of the generic methodology for automatic processing (mapping and classification) of environmental data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve the problem of spatial data mapping (regression). The Probabilistic Neural Network (PNN) is considered as an automatic tool for spatial classifications. The automatic tuning of isotropic and anisotropic GRNN/PNN models using cross-validation procedure is presented. Results are compared with the k-Nearest-Neighbours (k-NN) interpolation algorithm using independent validation data set. Real case studies are based on decision-oriented mapping and classification of radioactively contaminated territories.
Resumo:
Colorectal cancer (CRC) is a major cause of cancer mortality. Whereas some patients respond well to therapy, others do not, and thus more precise, individualized treatment strategies are needed. To that end, we analyzed gene expression profiles from 1,290 CRC tumors using consensus-based unsupervised clustering. The resultant clusters were then associated with therapeutic response data to the epidermal growth factor receptor-targeted drug cetuximab in 80 patients. The results of these studies define six clinically relevant CRC subtypes. Each subtype shares similarities to distinct cell types within the normal colon crypt and shows differing degrees of 'stemness' and Wnt signaling. Subtype-specific gene signatures are proposed to identify these subtypes. Three subtypes have markedly better disease-free survival (DFS) after surgical resection, suggesting these patients might be spared from the adverse effects of chemotherapy when they have localized disease. One of these three subtypes, identified by filamin A expression, does not respond to cetuximab but may respond to cMET receptor tyrosine kinase inhibitors in the metastatic setting. Two other subtypes, with poor and intermediate DFS, associate with improved response to the chemotherapy regimen FOLFIRI in adjuvant or metastatic settings. Development of clinically deployable assays for these subtypes and of subtype-specific therapies may contribute to more effective management of this challenging disease.
Dissemination of the Swiss Model for Outcome Classification in Health Promotion and Prevention SMOC.
Resumo:
BACKGROUND: To compare the prognostic relevance of Masaoka and Müller-Hermelink classifications. METHODS: We treated 71 patients with thymic tumors at our institution between 1980 and 1997. Complete follow-up was achieved in 69 patients (97%) with a mean follow up-time of 8.3 years (range, 9 months to 17 years). RESULTS: Masaoka stage I was found in 31 patients (44.9%), stage II in 17 (24.6%), stage III in 19 (27.6%), and stage IV in 2 (2.9%). The 10-year overall survival rate was 83.5% for stage I, 100% for stage IIa, 58% for stage IIb, 44% for stage III, and 0% for stage IV. The disease-free survival rates were 100%, 70%, 40%, 38%, and 0%, respectively. Histologic classification according to Müller-Hermelink found medullary tumors in 7 patients (10.1%), mixed in 18 (26.1%), organoid in 14 (20.3%), cortical in 11 (15.9%), well-differentiated thymic carcinoma in 14 (20.3%), and endocrine carcinoma in 5 (7.3%), with 10-year overall survival rates of 100%, 75%, 92%, 87.5%, 30%, and 0%, respectively, and 10-year disease-free survival rates of 100%, 100%, 77%, 75%, 37%, and 0%, respectively. Medullary, mixed, and well-differentiated organoid tumors were correlated with stage I and II, and well-differentiated thymic carcinoma and endocrine carcinoma with stage III and IV (p < 0.001). Multivariate analysis showed age, gender, myasthenia gravis, and postoperative adjuvant therapy not to be significant predictors of overall and disease-free survival after complete resection, whereas the Müller-Hermelink and Masaoka classifications were independent significant predictors for overall (p < 0.05) and disease-free survival (p < 0.004; p < 0.0001). CONCLUSIONS: The consideration of staging and histology in thymic tumors has the potential to improve recurrence prediction and patient selection for combined treatment modalities.
Resumo:
When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.