144 resultados para Complications of


Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Promising new technologies are emerging in digestive surgery: Natural Orifice Transluminal Endoscopic Surgery (NOTES) and Single Port Access Surgery. They both aim to limit the surgical morbidity by decreasing the number of parietal accesses. The feasibility in human is obviously demonstrated, but numerous issues remain concerning the safety of these techniques. Furthermore, the expected advantages are not clearly demonstrated until now in the literature. In the future, it will be advisable to standardize techniques, in order to allow large clinical studies and to limit the potential complications of these approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current applications of cardiac magnetic resonance (CMR) imaging offer a wide spectrum of indications in the setting of acute cardiac care. In particular, CMR is helpful for the differential diagnosis of chest pain by detection of myocarditis and pericarditis. Also, takotsubo cardiomyopathy and acute aortic diseases can be evaluated by CMR and are important differential diagnoses in patients with acute chest pain. In patients with restricted windows for echocardiography, CMR is the method of choice to evaluate complications of acute myocardial infarction (AMI). In AMI, CMR allows for a unique characterization of myocardial damage by quantifying necrosis, microvascular obstruction, oedema (=area at risk), and haemorrhage. These capabilities will help us to understand better the pathophysiological events during infarction and will also allow to assess new treatment strategies in AMI. To what extent the information on tissue damage will guide patient management is not yet clear and further research in this field is warranted. In the near future, CMR will certainly become more routine in acute cardiac care units, as manufacturers are now focusing strongly on this aspect of user-friendliness. Finally, in the next decade or so, MRI of other nuclei such as fluorine and carbon might become a clinical reality, which would allow for metabolic and targeted molecular imaging with excellent sensitivity and specificity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Surgery of radiation-induced cataracts in children with retinoblastoma (RB) is a challenge as early intervention is weighted against the need to delay surgery until complete tumour control is obtained. This study analyses the safety and functional results of such surgery. Methods In a retrospective, non-comparative, consecutive case series, we reviewed medical records of RB patients </=14 y of age who underwent either external beam radiotherapy or plaque treatment and were operated for radiation-induced cataract between 1985 and 2008. Results In total, 21 eyes of 20 RB patients were included and 18 out of the 21 eyes had Reese-Ellsworth stage V or ABC classification group D/E RB. Median interval between last treatment for RB and cataract surgery was 21.5 months, range 3-164 months. Phacoaspiration was performed in 13 eyes (61%), extra-capsular cataract extraction in 8 (39%) and intraocular lens implantation in 19 eyes (90%). The majority of cases, 11/21 (52%), underwent posterior capsulorhexis or capsulotomy and 6/21 (28%) an anterior vitrectomy. Postoperative visual acuity was >/=20/200 in 13 eyes and <20/200 in 5 eyes. Intraocular tumour recurrence was noted in three eyes. Mean postoperative follow up was 90 months+/-69 months. Conclusions Modern cataract surgery, including clear cornea approach, lens aspiration with posterior capsulotomy, anterior vitrectomy and IOL implantation is a safe procedure for radiation-induced cataract as long as RB is controlled. The visual prognosis is limited by initial tumour involvement of the macula and by corneal complications of radiotherapy. We recommend a minimal interval of 9 months between completion of treatment of retinoblastoma and cataract surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cystinuria is a common inherited amino-aciduria resulting in abnormal urinary excretion of cystine and the dibasic aminoacids, lysine, arginine and ornithine. Formation of cystine kidney stones, recurrent infections and subsequent renal failure are the main complications of the disease. Recently, the gene SLC3A1 and SLC7A9, encoding the two subunits rBAT et b0,+AT of the proximal renal transporter complex, have been identified. In this article, we report the medical history of a 30-year-old patient and discuss the recent molecular progress, the clinical evolution, and the medical treatment of the cystinuria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To evaluate subconjunctival mitomycin C (MMC) injection efficacy and safety in patients with failing glaucoma non-penetrating filtering blebs. METHODS: Twenty-eight eyes were consecutively recruited for this study. Only one eye for each patient was randomly selected. All the recruited patients had glaucoma and uncontrolled intraocular pressure after a non-penetrating filtering glaucoma surgery and/or a pathological aspect of the filtering bleb (i.e., vascularized and/or encysted). One or more MMC injections were performed under the conjunctiva closed to the bleb to improve filtration. Local effects and complications of subconjunctival MMC injections were analyzed. RESULTS: Out of the 28 patients, 21 (75%) had MMC also applied intraoperatively. The mean postoperative IOP before MMC injections was 17 +/- 6.6 mmHg. The final IOP after MMC injections was 13.9 +/- 2.9 mmHg after a mean follow-up of 6 months. A total of 67 subconjunctival MMC injections were performed with a mean of 2.9 (ranging from 1 to 5) injections per patient. The only complication found to be possibly related to MMC injections was two cases of corneal Dellen. CONCLUSION: From these preliminary results, subconjunctival MMC injections in selected cases appear to be not only safe but also effective in promoting further the postoperative IOP drop.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasion of the laryngeal framework by thyroid carcinoma requires specific surgical techniques and carries a higher rate of complications that deserve to be highlighted. We reviewed our data from 1995 to 2012 and found six patients with laryngotracheal invasion by thyroid carcinoma. All underwent total thyroidectomy and single-stage cricotracheal resection, plus anterolateral neck dissection. Three had airway obstruction that necessitated prior endoscopic debulking. None of the patients needed a tracheotomy. There were four cases of papillary carcinoma, and two cases of undifferentiated carcinoma. One patient died of complications of the procedure (anastomotic dehiscence and tracheo-innominate artery fistula). Another died 2 months after the procedure from local recurrence and aspiration pneumonia. One case presented recurrence at 15 months, which was managed by re-excision and adjuvant radiotherapy; after 26 months of follow-up, he has no evidence of locoregional recurrence. The three other patients are alive without evidence of disease at 6, 18 and 41 months, respectively. Cricotracheal resection for subglottic invasion by thyroid carcinoma is an effective procedure, but carries significant risks of complications. This could be attributed to the devascularisation of the tracheal wall due to the simultaneous neck dissection, sacrifice of the strap muscles or of a patch of oesophageal muscle layer. We advocate a sternocleidomastoid flap to cover the anastomosis. Cricotracheal resection for subglottic invasion can be curative with good functional outcomes, even for the advanced stages of thyroid cancer. Endoscopic debulking of the airway prior to the procedure avoids tracheotomy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Severe sepsis and septic shock are lethal complications of infection, characterised by dysregulated inflammatory and immune responses. Our understanding of the pathogenesis of sepsis has improved markedly in recent years, but unfortunately has not been translated into efficient treatment strategies. Epigenetic mechanisms such as covalent modification of histones by acetylation are master regulators of gene expression under physiological and pathological conditions, and strongly impact on inflammatory and host defence responses. Histone acetylation is controlled by histone acetyltransferases and histone deacetylases (HDACs), which affect gene expression also by targeting non-histone transcriptional regulators. Numerous HDAC inhibitors (HDACi) are being tested in clinical trials, primarily for the treatment of cancer. We performed the first comprehensive study of the impact of HDACi on innate immune responses in vitro and in vivo. We showed that HDACi act essentially as negative regulators of the expression of critical immune receptors and antimicrobial pathways in innate immune cells. In agreement, HDACi impaired phagocytosis and killing of bacteria by macrophages, and increased susceptibility to non-severe bacterial and fungal infections. Strikingly, proof-of-principle studies demonstrated that HDACi protect from lethal toxic shock and septic shock. Overall, our observations argue for a close monitoring of the immunological and infection status of patients treated with HDACi, especially immunocompromised cancer patients. They also support the concept of pharmacological inhibitors of HDACs as promising drugs to treat inflammatory diseases, including sepsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The usual complications of total knee arthroplasty include thrombo-embolism, infection, and loosening. We report an unusual and potentially serious complication of an intramedullary guide lodging within the femoral canal during the procedure. Considering the risk of fracture and additional exposure, the guide was not removed and was cut in situ. The rest of the operation was completed successfully and the patient made an uneventfully recovery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé : Malgré les immenses progrès réalisés depuis plusieurs années en médecine obstétricale ainsi qu'en réanimation néonatale et en recherche expérimentale, l'asphyxie périnatale, une situation de manque d'oxygène autour du moment de la naissance, reste une cause majeure de mortalité et de morbidité neurologique à long terme chez l'enfant (retard mental, paralysie cérébrale, épilepsie, problèmes d'apprentissages) sans toutefois de traitement pharmacologique réel. La nécessité de développer de nouvelles stratégies thérapeutiques pour les complications de l'asphyxie périnatale est donc aujourd'hui encore essentielle. Le but général de ce travail est l'identification de nouvelles cibles thérapeutiques impliquées dans des mécanismes moléculaires pathologiques induits par l'hypoxie-ischémie (HI) dans le cerveau immature. Pour cela, le modèle d'asphyxie périnatale (proche du terme) le plus reconnu chez le rongeur a été développé (modèle de Rice et Vannucci). Il consiste en la ligature permanente d'une artère carotide commune (ischémie) chez le raton de 7 jours combinée à une période d'hypoxie à 8% d'oxygène. Il permet ainsi d'étudier les lésions de type hypoxique-ischémique dans différentes régions cérébrales dont le cortex, l'hippocampe, le striatum et le thalamus. La première partie de ce travail a abordé le rôle de deux voies de MAPK, JNK et p38, après HI néonatale chez le raton à l'aide de peptides inhibiteurs. Tout d'abord, nous avons démontré que D-JNKI1, un peptide inhibiteur de la voie de JNK présentant de fortes propriétés neuroprotectrices dans des modèles d'ischémie cérébrale adulte ainsi que chez le jeune raton, peut intervenir sur différentes voies de mort dont l'activation des calpaïnes (marqueur de la nécrose précoce), l'activation de la caspase-3 (marqueur de l'apoptose) et l'expression de LC3-II (marqueur de macroautophagie). Malgré ces effets positifs le traitement au D-JNKI1 ne modifie pas l'étendue de la lésion cérébrale. L'action limitée de D-JNKI1 peut s'expliquer par une implication modérée des JNKs (faiblement activées et principalement l'isotype JNK3) après HI néonatale sévère. Au contraire, l'inhibition de la voie de nNOS/p38 par le peptide DTAT-GESV permet une augmentation de 20% du volume du tissu sain à court et long terme. Le second projet a étudié les effets de l'HI néonatale sur l'autophagie neuronale. En effet, l'autophagie est un processus catabolique essentiel au bien-être de la cellule. Le type principal d'autophagie (« macroautophagie » , que nous appellerons par la suite « autophagie ») consiste en la séquestration d'éléments à dégrader (protéines ou organelles déficients) dans un compartiment spécialisé, l'autophagosome, qui fusionne avec un lysosome pour former un autolysosome où le contenu est dégradé par les hydrolases lysosomales. Depuis peu, l'excès ou la dérégulation de l'autoptiagie a pu être impliqué dans la mort cellulaire en certaines conditions de stress. Ce travail démontre que l'HI néonatale chez le raton active fortement le flux autophagique, c'est-à-dire augmente la formation des autophagosomes et des autolysosomes, dans les neurones en souffrance. De plus, la relation entre l'autophagie et l'apoptose varie selon la région cérébrale. En effet, alors que dans le cortex les neurones en voie de mort présentent des caractéristiques mixtes apoptotiques et autophagiques, ceux du CA3 sont essentiellement autophagiques et ceux du CA1 sont principalement apoptotiques. L'induction de l'autophagie après HI néonatale semble donc participer à la mort neuronale soit par l'enclenchement de l'apoptose soit comme mécanisme de mort en soi. Afin de comprendre la relation pouvant exister entre autophagie et apoptase un troisième projet a été réalisé sur des cultures primaires de neurones corticaux exposés à un stimulus apoptotique classique, la staurosporine (STS). Nous avons démontré que l'apoptose induite par la STS était précédée et accompagnée par une forte activation du flux autophagique neuronal. L'inhibition de l'autophagie de manière pharmacologique (3-MA) ou plus spécifiquement par ARNs d'interférence dirigés contre deux protéines autophagiques importantes (Atg7 et Atg5) a permis de mettre en évidence des rôles multiples de l'autophagie dans la mort neuronale. En effet, l'autophagie prend non seulement part à une voie de mort parallèle à l'apoptose pouvant être impliquée dans l'activation des calpaïnes, mais est également partiellement responsable de l'induction des voies apoptotiques (activation de la caspase-3 et translocation nucléaire d'AIF). En conclusion, ce travail a montré que l'inhibition de JNK par D-JNKI1 n'est pas un outil neuroprotecteur efficace pour diminuer la mort neuronale provoquée par l'asphyxie périnatalé sévère, et met en lumière deux autres voies thérapeutiques beaucoup plus prometteuses, l'inhibition de nNOS/p38 ou de l'autophagie. ABSTRACT : Despite enormous progress over the last«decades in obstetrical and neonatal medicine and experimental research, perinatal asphyxia, a situation of lack of oxygen around the time of the birth, remains a major cause of mortality and long term neurological morbidity in children (mental retardation, cerebral palsy, epilepsy, learning difficulties) without any effective treatment. It is therefore essential to develop new therapeutic strategies for the complications of perinatal asphyxia. The overall aim of this work was to identify new therapeutic targets involved in pathological molecular mechanisms induced by hypoxia-ischemia (HI) in the immature brain. For this purpose, the most relevant model of perinatal asphyxia (near term) in rodents has been developed (model of Rice and Vannucci). It consists in the permanent ligation of one common carotid artery (ischemia) in the 7-day-old rat combined with a period of hypoxia at 8% oxygen. This model allows the study of the hypoxic-ischemic lesion in different brain regions including the cortex, hippocampus, striatum and thalamus. The first part of this work addressed the role of two MAPK pathways (JNK and p38) after rat neonatal HI using inhibitory peptides. First, we demonstrated that D-JNKI1, a JNK peptide inhibitor presenting strong neuroprotective properties in models of cerebral ischemia in adult and young rats, could affect different cell death mechanisms including the activation of calpain (a marker of necrosis) and caspase-3 (a marker of apoptosis), and the expression of LC3-II (a marker of macroautophagy). Despite these positive effects, D-JNKI1 did not modify the extent of brain damage. The limited action of D-JNKI1 can be explained by the fact that JNKs were only moderately involved (weakly activated and principally the JNK3 isotype) after severe neonatal HI. In contrast, inhibition of nNOS/p38 by the peptide D-TAT-GESV increased the surviving tissue volume by around 20% at short and long term. The second project investigated the effects of neonatal HI on neuronal autophagy. Indeed, autophagy is a catabolic process essential to the well-being of the cell. The principal type of autophagy ("macroautophagy", that we shall henceforth call "autophagy") involves the sequestration of elements to be degraded (deficient proteins or organelles) in a specialized compartment, the autophagosome, which fuses with a lysosome to form an autolysosome where the content is degraded by lysosomal hydrolases. Recently, an excess or deregulation of autophagy has been implicated in cell death in some stress conditions. The present study demonstrated that rat neonatal HI highly enhanced autophagic flux, i.e. increased autophagosome and autolysosome formation, in stressed neurons. Moreover, the relationship between autophagy and apoptosis varies according to the brain region. Indeed, whereas dying neurons in the cortex exhibited mixed features of apoptosis and autophagy, those in CA3 were primarily autophagíc and those in CA1 were mainly apoptotic. The induction of autophagy after neonatal HI seems to participate in neuronal death either by triggering apoptosis or as a death mechanism per se. To understand the relationships that may exist between autophagy and apoptosis, a third project has been conducted using primary cortical neuronal cultures exposed to a classical apoptotic stimulus, staurosporine (STS). We demonstrated that STS-induced apoptosis was preceded and accompanied by a strong activation of neuronal autophagic flux. Inhibition of autophagy pharmacologically (3-MA) or more specifically by RNA interference directed against two important autophagic proteins (Atg7 and AtgS) showed multiple roles of autophagy in neuronal death. Indeed, autophagy was not only involved in a death pathway parallel to apoptosis possibly involved in the activation of calpains, but was also partially responsible for the induction of apoptotic pathways (caspase-3 activation and AIF nuclear translocation). In conclusion, this study showed that JNK inhibition by D-JNKI1 is not an effective neuroprotective tool for decreasing neuronal death following severe perinatal asphyxia, but highlighted two more promising therapeutic approaches, inhibition of the nNOSlp38 pathway or of autophagy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cocaine is a well known trigger of acute coronary syndromes. Over the last 10 years levamisole, a veterinary anthelminthic drug has been increasingly used as an adulterant of cocaine. Levamisole was used to treat pediatric nephritic syndrome and rheumatoid arthritis before being withdrawn from the market due to its significant toxicity, i.e. hematological complications and vasculitis. The major complications of levamisole-adultered cocaine reported up to now are hematological and dermatological. The case reported here is of a 25 year old man with a history of cocaine abuse who died at home after complaining of retrosternal pain. Postmortem CT-angiography, autopsy, and chemical and toxicological analyses were performed. An eroded coronary artery plaque was found at the proximal segment of the left anterior descending coronary artery. Two myocardial infarct scars were present in the left ventricle. Microscopic examination of the coronary artery revealed infiltration of eosinophils into the adventitia and intima. Toxicological examination confirmed the presence of cocaine and its metabolites in the peripheral blood, and of levamisole in the urine and pericardial fluid. Eosinophilic inflammatory coronary artery pathologies have been clinically linked to coronary dissection, hypersensitivity coronary syndrome and vasospastic allergic angina. The coronary pathology in the presented case could be a complication of levamisole-adultered cocaine use, in which an allergic or immune-mediated mechanism might play a role. The rise in cocaine addiction worldwide and the increase of levamisole adulterated cocaine highlights the importance of updating our knowledge of the effects of adultered cocaine abuse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Intravenous thrombolysis (IVT) for stroke seems to be beneficial independent of the underlying etiology. Recent observations raised concern that IVT might cause harm in patients with strokes attributable to small artery occlusion (SAO). OBJECTIVE: The safety of IVT in SAO-patients is addressed in this study. METHODS: We used the Swiss IVT databank to compare outcome and complications of IVT-treated SAO-patients with IVT-treated patients with other etiologies (non-SAO-patients). Main outcome and complication measures were independence (modified Rankin scale <or=2) at 3 months, intracranial hemorrhage (ICH), and recurrent ischaemic stroke. RESULTS: Sixty-five (6.2%) of 1048 IVT-treated patients had SAO. Amongst SAO-patients, 1.5% (1/65) patients died, compared to 11.2% (110/983) in the non-SAO-group (P = 0.014). SAO-patients reached independence more often than non-SAO-patients (75.4% versus 58.9%; OR 2.14 (95% CI 1.20-3.81; P = 0.001). This association became insignificant after adjustment for age, gender, and stroke severity (OR 1.41 95% CI 0.713-2.788; P = 0.32). Glucose level and (to some degree) stroke severity but not age predicted 3-month-independence in IVT-treated SAO-patients. ICHs (all/symptomatic) were similar in SAO- (12.3%/4.6%) and non-SAO-patients (13.4%/5.3%; P > 0.8). Fatal ICH occurred in 3.3% of the non-SAO-patients but none amongst SAO-patients. Ischaemic stroke within 3 months after IVT reoccurred in 1.5% of SAO-patients and in 2.3% of non-SAO-patients (P = 0.68). CONCLUSION: IVT-treated SAO-patients died less often and reached independence more often than IVT-treated non-SAO-patients. However, the variable 'SAO' was a dependent rather than an independent outcome predictor. The absence of an excess in ICH indicates that IVT seems not to be harmful in SAO-patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucose is an important metabolic substrate of the retina and diabetic patients have to maintain a strict normoglycemia to avoid diabetes secondary effects, including cardiovascular disease, nephropathy, neuropathy and retinopathy. Others and we recently demonstrated the potential role of hypoglycemia in diabetic retinopathy. We showed acute hypoglycemia to induce retinal cell death both in vivo during an hyperinsulinemic/hypoglycemic clamp and in vitro in 661W photoreceptor cells cultured at low glucose concentration. In the present study, we showed low glucose to induce a decrease of BCL2 and BCL-XL anti-apoptotic proteins expression, leading to an increase of free pro-apoptotic BAX. In parallel, we showed that, in retinal cells, low glucose-induced apoptosis is involved in the process of autophagosomes formation through the AMPK/RAPTOR/mTOR pathway. Moreover, the decrease of LAMP2a expression led to a defect in the autophagosome/lysosome fusion process. Specific inhibition of autophagy, either by 3-methyladenine or by down-regulation of ATG5 or ATG7 proteins expression, increased caspase 3 activation and 661W cell death. We show that low glucose modifies the delicate equilibrium between apoptosis and autophagy. Cells struggled against low nutrient condition-induced apoptosis by starting an autophagic process, which led to cell death when inhibited. We conclude that autophagy defect is associated with low glucose-induced 661W cells death that could play a role in diabetic retinopathy. These results could modify the way of addressing negative effects of hypoglycemia. Short-term modulation of autophagy could be envisioned to treat diabetic patients in order to avoid secondary complications of the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic exposure to glucocorticoid hormones, resulting from either drug treatment or Cushing's syndrome, results in insulin resistance, central obesity, and symptoms similar to the metabolic syndrome. We hypothesized that the major metabolic effects of corticosteroids are mediated by changes in the key metabolic enzyme adenosine monophosphate-activated protein kinase (AMPK) activity. Activation of AMPK is known to stimulate appetite in the hypothalamus and stimulate catabolic processes in the periphery. We assessed AMPK activity and the expression of several metabolic enzymes in the hypothalamus, liver, adipose tissue, and heart of a rat glucocorticoid-excess model as well as in in vitro studies using primary human adipose and primary rat hypothalamic cell cultures, and a human hepatoma cell line treated with dexamethasone and metformin. Glucocorticoid treatment inhibited AMPK activity in rat adipose tissue and heart, while stimulating it in the liver and hypothalamus. Similar data were observed in vitro in the primary adipose and hypothalamic cells and in the liver cell line. Metformin, a known AMPK regulator, prevented the corticosteroid-induced effects on AMPK in human adipocytes and rat hypothalamic neurons. Our data suggest that glucocorticoid-induced changes in AMPK constitute a novel mechanism that could explain the increase in appetite, the deposition of lipids in visceral adipose and hepatic tissue, as well as the cardiac changes that are all characteristic of glucocorticoid excess. Our data suggest that metformin treatment could be effective in preventing the metabolic complications of chronic glucocorticoid excess.