154 resultados para Cardiomyocyte Hypertrophy
Resumo:
The clinicopathologic case of a 53-year-old female patient with an abnormal tumor growing on the mucous part of the superior right eyelid is reported. The patient was operated on for ten years ago and a whitish mass slowly developed on the conjunctival face of the eyelid disturbing the use of corneal lenses. It was hard, painless and had the shape of a flat mushroom. The removal was performed under local anesthesia and allowed us to resect a hard and fibrous lesion. Histopathology showed that the lesion was made of a fibrous tissue organized like a hypertrophic scar. Surgical treatment of chalazion is frequent and rarely gives rise to abnormal scarring.
Resumo:
Résumé GLUT8 est la première des nouvelles isoformes des GLUT récemment identifiés. Il est fortement exprimé dans les testicules et plus faiblement dans les blastocystes, le cerveau, particulièrement au niveau de l'hippocampe, et le coeur. En conditions basales, il est retenu dans un compartiment intracellulaire. Si on l'exprime en surface cellulaire, par la mutation du motif d'internalisation dileucine, il transporte le glucose avec une bonne affinité. Dans le but d'étudier sa fonction au niveau de l'organisme, nous avons créé un modèle de knock out conditionnel, en entourant le dernier exon du gène de GLUT8 par deux sites loxP. En croisant nos souris avec une souche de souris transgénique exprimant la cre-recombinase dans les cellules de la lignée germinale, nous avons généré un modèle de souris portant la délétion totale de GLUT8 de manière constitutionnelle. Les statistiques effectuées sur les premières naissances indiquent qu'une partie des souris knock out ne survit pas, suggérant un rôle de GLUT8 au niveau du développement embryonnaire. Les souris qui ont survécu ne présentent toutefois pas d'anomalies durant la croissance et sont fertiles. Elles ont des taux de glucose et d'insuline sanguins normaux. Au niveau cérébral, la structure de l'hippocampe n'est pas modifiée par la suppression de GLUT8, cependant, les souris GLUT8-/- présentent une prolifération cellulaire augmentée dans le gyrus denté. Cette augmentation de division cellulaire pourrait être la réponse adaptée à une éventuelle augmentation de la mort cellulaire au niveau de l'hippocampe. Elles ne semblent toutefois pas présenter de défauts cognitifs majeurs dans le bassin de Morris en conditions normales. Toutefois, en conditions de jeûne, elles tendent à une meilleure mémorisation à court terme. Les études morphologiques et histologiques au niveau cardiaque n'ont pas révélé de d'hypertrophie au niveau ventriculaire. La stimulation de la contraction à l'isoprotérénol n'a pas mis en évidence de défaut d'adaptation des coeurs GLUT8-/-. Cependant l'analyse fonctionnelle par électrocardiogramme, en conditions basales, a montré une augmentation de la durée de l'onde P, suggérant un défaut dans la dépolarisation des oreillettes. Nos résultats indiquent que GLUT8 ne joue pas un rôle prédominant dans la survie et la fonction basale des souris. Il pourrait jouer un rôle plus important dans des situations stressantes pour l'organisme, comme l'hypoglycémie ou les conditions d'ischémie qui induiraient son expression à la membrane plasmique et stimuleraient le captage du glucose. Abstract GLUT8 was the first of the recently identified isoform of the GLUT family proteins. It is strongly expressed in the testis. It is also found at a lower level in the blastocyst, in heart and in the brain. Under basal conditions, it is retained in the intracellular compartment, but when the internalization motif dileucine is mutated, GLUT8 translocates to the plasma membrane and transports glucose with a relatively high affinity. To study its function in vivo, we created a conditional knock out mouse model. To do so, we targeted the last exon of the GLUT8 gene with two loxP sites. We then crossed these mice with a transgenic model expressing the cre-recombinase in the gem' line to generate a constitutional total knock out mouse. The statistics made on the first breedings showed that some of the knock out mice do not survive, suggesting a role of GLUT8 in the embryonic development. Conversely mice who survive do not show developmental defects and they are fertile with normal glucose and insulin blood levels. In the brain, the general structure of the hippocampus is not modified by the deletion of GLUT8. However, GLUT8-/- mice show an increase in the cell proliferation in the dentate gyms. This cell proliferation could be due to an increase in the cell death in the hippocampus. When tested in the morris water maze, these mice do not show any cognitive defects in the basal conditions, but they have a tendency to learn better in fasted conditions. The morphological and histological studies made at the heart level did not show any cardiac hypertrophy in the ventricles. The stimulation with isoproterenol did not show any adaptation defects in the GLUT8-/- hearts. However, the functional analysis made in basal conditions with the electrocardiogram showed an increase in the P wave length, suggesting a defect in the atrial depolarization in the knock out mice. Overall, our results show that GLUT8 does not play an important role in the basal general functions in the mice, but might play a more important role during whole organism stress. Hypoglycaemia or ischemia, for example could stimulate the GLUT8 translocation to the plasma membrane to increase specifically glucose uptake. Résumé tout public Les différentes cellules de l'organisme possèdent des propriétés particulières, qui leur permettent de maintenir les fonctions de l'organe auquel elles appartiennent. La membrane plasmique qui les délimite sélectionne les substances qui vont pénétrer à l'intérieur de la cellule et permet ainsi de maintenir un environnement interne constant. Le glucose est une source d'énergie importante pour la cellule et doit pouvoir pénétrer à l'intérieur de la cellule. Il utilise pour cela des protéines de transport qui le feront passer de part et d'autre de la membrane. Les protéines de la famille des GLUT (pour GLUcose Transporter) possèdent cette capacité. GLUT8 est un membre de la famille des GLUT identifié récemment. Il possède la capacité de transporter le glucose quand il se présente à la surface de la cellule. Il est principalement exprimé dans les testicules, dans le coeur et le cerveau et durant le développement embryonnaire. Son rôle n'est toutefois pas encore défini. Ce travail consiste à étudier la fonction de GLUT8 au niveau de l'organisme entier. Nous avons créé un modèle de souris dans lesquelles l'expression de GLUT8 a été supprimée pour mettre en évidence son importance dans le maintien de l'intégrité des fonctions du corps. Les observations effectuées sur les souris qui n'expriment plus GLUT8 nous indiquent que leurs cellules prolifèrent plus vite au niveau de l'hippocampe. L'hippocampe est une structure située dans le cerveau qui est impliquée dans les phénomènes d'apprentissage. Les souris qui ont été testées dans des tâches d'apprentissage n'ont malgré cela pas montré une amélioration de la mémorisation. Dans le coeur, la suppression de GLUT8 semble présenter un défaut quand on mesure l'activité électrique du coeur par électrocardiogramme. Toutefois, ils fonctionnent normalement et ne présentent pas de défauts morphologiques en conditions normales. Les expériences effectuées sur les modèles de souris indiquent que GLUT8 ne jouerait pas un rôle prédominant dans le fonctionnement normal du corps. Il pourrait exercer sa fonction dans des situations plus particulières comme l'hypoglycémie, où il permettrait une meilleure capacité à transporter le glucose dans les cellules.
Resumo:
The goal of the present study was to examine the viscoelastic properties of the carotid artery in genetically identical rats exposed to similar levels of blood pressure sustained by different mechanisms. Eight-week old male Wistar rats were examined 2 weeks after renal artery clipping (two-kidney, one clip [2K1C] Goldblatt rats, n = 53) or sham operation (n = 49). One half of the 2K1C and sham rats received the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 1.48 mmol/L) in their drinking water for 2 weeks after the surgical procedure. Mean blood pressure increased significantly in the 2K1C-water (182 mm Hg), 2K1C-L-NAME (197 mm Hg), and sham-L-NAME (170 mm Hg) rats compared with the sham-water rats (127 mm Hg). Plasma renin activity was not altered by L-NAME but significantly enhanced after renal artery clipping. A significant and similar increase in the cross-sectional area of the carotid artery was observed in L-NAME and vehicle-treated 2K1C rats. L-NAME per se did not modify cross-sectional area in the sham rats. There was a significant upward shift of the distensibility-pressure curve in the L-NAME- and vehicle-treated 2K1C rats compared with the sham-L-NAME rats. L-NAME treatment did not alter the distensibility-pressure curve in the 2K1C rats. These results demonstrate that the mechanisms responsible for artery wall hypertrophy in renovascular hypertension are accompanied by an increase in arterial distensibility that is not dependent on the synthesis of nitric oxide.
Resumo:
The excessive accumulation of the adipose tissue is at the origin of the obesity. However its severity has no direct correlation with the comorbidities. These last ones are rather linked to the type of distribution of the fat than to its total quantity. The morphological and functional analysis of the adipose tissue reveals specific differences in its localization. The adipose tissue is thus a complex organ constituted by several cell types having various capacities of hypertrophy, hyperplasia and differentiation. While the first one is more predominant in the subcutaneous compartment, where the cell size is big, the others are more specific of the visceral adipocytes. Finally the severity of the obesity is linked to hypertrophy, while the comorbidities are associated with the capacity of proliferation and differentiation.
Resumo:
The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease.
Resumo:
The early detection of cardiac organ damage in clinical practice is primordial for cardiovascular risk profiling of patients with hypertension. In this respect the determination of microalbuminuria is very appealing because it increasingly appears to be the most cost-effective means to identify cardiovascular and renal complications. Considering the treatment of patients with target organ damage, blockers of the renin-angiotensin system have a key position as they are very effective in regressing left ventricular hypertrophy, lowering urinary albumin excretion and delaying the progression of nephropathy. In high-risk patients with atherosclerosis, the use of a blocker of the renin-angiotensin system is also appealing, and it appears increasingly judicious to combine such a blocker with a calcium antagonist whenever required to control blood pressure.
Resumo:
Electrical pacing at physiological rate induces myocardial remodeling associated with regional changes in workload, blood flow and oxygen consumption. However, to what extent energy-producing pathways are also modified within the paced heart remains to be investigated. Pacing could particularly affect glycogen metabolism since hypertrophy stimulates glycolysis and increased workload favors glucose over fat oxidation. In order to test this hypothesis, we used the embryonic chick heart model in which ventricular pacing rapidly resulted in thinning of the ventricle wall and thickening of the atrial wall. Hearts of stage 22HH chick embryos were submitted in ovo to asynchronous and intermittent ventricular pacing delivered at physiological rate during 24 h. The resulting alterations of glycogen content were determined in atrium, ventricle and conotruncus of paced and sham-operated hearts. Hemodynamic parameters of the paced and spontaneously beating hearts were derived from computerized image analysis of video recordings. With respect to sham, paced hearts showed a significant decrease in glycogen content (nmoles glucose units/microg protein; mean+/-S.D.) only in atrium (1.48+/-0.40 v 0.84+/-0.34, n=8) and conotruncus (0.75+/-0.28 v 0.42+/-0.23, n=8). Pacing decreased the end diastolic and stroke volumes by 34 and 44%, respectively. Thus, the rapid glycogen depletion in regions remote from the stimulation site appears to be associated with regional changes in workload and remodeling. These findings underscore the importance of the coupling mechanisms between metabolic pathways and myocardial remodeling in the ectopically paced heart.
Resumo:
Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.
Resumo:
We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the development of cardiovascular remodeling, independently of blood pressure in a high mineralocorticoid state. In this study, we compared the effect of 5-wk low- and high-salt intake on cardiovascular remodeling and cardiac differential gene expression in mice receiving the same amount of DOCA. Differential gene and protein expression was measured by high-density cDNA microarray assays, real-time PCR and Western blot analysis in DOCA-high salt (HS) vs. DOCA-low salt (LS) mice. DOCA-HS mice developed cardiac hypertrophy, coronary perivascular fibrosis, and left ventricular dysfunction. Differential gene and protein expression demonstrated that high-salt intake upregulated a subset of genes encoding for proteins involved in inflammation and extracellular matrix remodeling (e.g., Col3a1, Col1a2, Hmox1, and Lcn2). A major subset of downregulated genes encoded for transcription factors, including myeloid differentiation primary response (MyD) genes. Our data provide some evidence that vascular remodeling, fibrosis, and inflammation are important consequences of a high-salt intake in DOCA mice. Our study suggests that among the different pathogenic factors of cardiac and vascular remodeling, such as hypertension and mineralocorticoid excess and sodium intake, the latter is critical for the development of the profibrotic and proinflammatory phenotype observed in the heart of normotensive DOCA-treated mice.
Resumo:
INTRODUCTION: The endogenous opioid system has been reported to interact with both the cardiac sympathetic and renin-angiotensin systems in exerting a local regulatory action on the heart. The goal of this investigation was to examine how cardiac levels of enkephalin production are altered in the development of normotensive primary hypertrophy due to elevated intra-cardiac angiotensin II (Ang II) production. METHODS: Atrial and ventricular methionine-enkephalin (ME) levels were measured by quantitative radioimmunoassay in 14 and 28-week-old male transgenic mice (TG1306/1R) and control mice. The TG1306/1R exhibit cardiac specific Ang II overexpression and cardiac hypertrophy, but not hypertension. RESULTS: TG1306/1R mice had significantly higher heart/body weight ratios (15-20%) than control littermates at both 14 (p=0.02) and 28 weeks (p=0.04). Relative to controls, ME content was significantly elevated (approximately two-fold) in atria and ventricles in the older 28-week TG1306/1R mice only. A significant inverse correlation between heart size and ME level was observed for 28-week TG1306/1R only. CONCLUSIONS: We have provided evidence that a marked elevation of myocardial enkephalin level is observed in the established (but not early) phase of cardiac hypertrophy associated with cardiac-specific Ang II-overexpression. This study identifies a potentially important relationship between two endogenous peptidergic signalling systems involved in the regulation of growth and function of the hypertrophic heart.
Resumo:
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
BACKGROUND: The race- and sex-specific epidemiology of incident heart failure (HF) among a contemporary elderly cohort are not well described. METHODS: We studied 2934 participants without HF enrolled in the Health, Aging, and Body Composition Study (mean [SD] age, 73.6 [2.9] years; 47.9% men; 58.6% white; and 41.4% black) and assessed the incidence of HF, population-attributable risk (PAR) of independent risk factors for HF, and outcomes of incident HF. RESULTS: During a median follow-up of 7.1 years, 258 participants (8.8%) developed HF (13.6 cases per 1000 person-years; 95% confidence interval, 12.1-15.4). Men and black participants were more likely to develop HF. No significant sex-based differences were observed in risk factors. Coronary heart disease (PAR, 23.9% for white participants and 29.5% for black participants) and uncontrolled blood pressure (PAR, 21.3% for white participants and 30.1% for black participants) carried the highest PAR in both races. Among black participants, 6 of 8 risk factors assessed (smoking, increased heart rate, coronary heart disease, left ventricular hypertrophy, uncontrolled blood pressure, and reduced glomerular filtration rate) had more than 5% higher PAR compared with that among white participants, leading to a higher overall proportion of HF attributable to modifiable risk factors in black participants vs white participants (67.8% vs 48.9%). Participants who developed HF had higher annual mortality (18.0% vs 2.7%). No racial difference in survival after HF was noted; however, rehospitalization rates were higher among black participants (62.1 vs 30.3 hospitalizations per 100 person-years, P < .001). CONCLUSIONS: Incident HF is common in older persons; a large proportion of HF risk is attributed to modifiable risk factors. Racial differences in risk factors for HF and in hospitalization rates after HF need to be considered in prevention and treatment efforts.
Resumo:
Pharmacological treatment of hypertension represents a cost-effective way of preventing cardiovascular and renal complications. To benefit maximally from antihypertensive treatment, blood pressure should be brought to below 140/90 mmHg in every hypertensive patient, and even lower (< 130/80 mmHg) if diabetes or renal disease co-exists. Such targets cannot usually be reached using monotherapies. This is especially true in patients who present with a high cardiovascular risk. The co-administration of two agents acting by different mechanisms considerably increases the blood pressure control rate. Such combinations are not only efficacious, but are also well tolerated, and some fixed low-dose combinations even have a placebo-like tolerability. This is the case for the preparation containing the angiotensin-converting enzyme inhibitor perindopril (2 mg) and the diuretic indapamide (0.625 mg), a fixed low-dose combination that has been shown in controlled trials to be more effective than monotherapies in reducing albuminuria, regressing cardiac hypertrophy and improving the stiffness of large arteries. Using this combination to initiate antihypertensive therapy has been shown in a double-blind trial (Strategies of Treatment in Hypertension: Evaluation; STRATHE) to normalize blood pressure (< 140/90 mmHg) in significantly more patients (62%) than a sequential monotherapy approach based on atenolol, losartan and amlodipine (49%) and a stepped-care strategy based on valsartan and hydrochlorothiazide (47%), with no difference between the three arm groups in terms of tolerability. An ongoing randomized trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; ADVANCE) is a study with a 2 x 2 factorial design assessing the effects of the fixed-dose perindopril-indapamide combination and of the intensive gliclazide modified release-based glucose control regimen in type 2 diabetic patients, with or without hypertension. A total of 11 140 patients were randomly selected. Within the first 6 weeks of treatment (run-in phase), the perindopril-indapamide combination lowered blood pressure from 145/81 +/- 22/11 mmHg (mean +/- SD) to 137/78 +/- 20/10 mmHg. Fixed-dose combinations are becoming more and more popular for the management of hypertension, and are even proposed by hypertension guidelines as a first-line option to treat hypertensive patients.
Resumo:
We read with great interest the results of the study by Lucena et al.(1) and present the following comments related to the paper. Lucena et al. presented a series of 21-cocaine-related sudden deaths (SD) showing two main structural abnormalities, cardiac hypertrophy and atherosclerotic coronary disease. Both abnormalities have been previously considered as a consequence of a chronic cocaine abuse, but could also be related to others cardiovascular risk factors, as admitted by Lucena et al.