138 resultados para Calcineurin Inhibitors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastomas (GBMs) are the most frequent and malignant brain tumors in adults. Glucocorticoids (GCs) are routinely used in the treatment of GBMs for their capacity to reduce the tumor-associated edema. Few in vitro studies have suggested that GCs inhibit the migration and invasion of GBM cells through the induction of MAPK phosphatase 1 (MKP-1). Macrophage migration inhibitory factor (MIF), an endogenous GC antagonist is up-regulated in GBMs. Recently, MIF has been involved in tumor growth and migration/invasion and specific MIF inhibitors have been developed on their capacity to block its enzymatic tautomerase activity site. In this study, we characterized several glioma cell lines for their MIF production. U373 MG cells were selected for their very low endogenous levels of MIF. We showed that dexamethasone inhibits the migration and invasion of U373 MG cells, through a glucocorticoid receptor (GR)- dependent inhibition of the ERK1/2 MAPK pathway. Oppositely, we found that exogenous MIF increases U373 MG migration and invasion through the stimulation of the ERK1/2 MAP kinase pathway and that this activation is CD74 independent. Finally, we used the Hs 683 glioma cells that are resistant to GCs and produce high levels of endogenous MIF, and showed that the specific MIF inhibitor ISO-1 could restore dexamethasone sensitivity in these cells. Collectively, our results indicate an intricate pathway between MIF expression and GC resistance. They suggest that MIF inhibitors could increase the response of GBMs to corticotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is an effective clinical treatment for a number of different cancers. PDT can induce hypoxia and inflammation, pro-angiogenic side effects, which may counteract its angio-occlusive mechanism. The combination of PDT with anti-angiogenic drugs offers a possibility for improved anti-tumour outcome. We used two tumour models to test the effects of the clinically approved angiostatic tyrosine kinase inhibitors sunitinib, sorafenib and axitinib in combination with PDT, and compared these results with the effects of bevacizumab, the anti-VEGF antibody, for the improvement of PDT. Best results were obtained from the combination of PDT and low-dose axitinib or sorafenib. Molecular analysis by PCR revealed that PDT in combination with axitinib suppressed VEGFR-2 expression in tumour vasculature. Treatment with bevacizumab, although effective as monotherapy, did not improve PDT outcome. In order to test for tumour vessel normalization effects, axitinib was also applied prior to PDT. The absence of improved PDT outcome in these experiments, as well as the lack of increased oxygenation in axitinib-treated tumours, suggests that vascular normalization did not occur. The current data imply that there is a future for certain anti-angiogenic agents to further improve the efficacy of photodynamic anti-cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR) which is part of two functionally distinct complexes, mTORC1 and mTORC2, plays an important role in vascular endothelial cells. Indeed, the inhibition of mTOR with an allosteric inhibitor such as rapamycin reduces the growth of endothelial cell in vitro and inhibits angiogenesis in vivo. Recent studies have shown that blocking mTOR results in the activation of other prosurvival signals such as Akt or MAPK which counteract the growth inhibitory properties of mTOR inhibitors. However, little is known about the interactions between mTOR and MAPK in endothelial cells and their relevance to angiogenesis. Here we found that blocking mTOR with ATP-competitive inhibitors of mTOR or with rapamycin induced the activation of the mitogen-activated protein kinase (MAPK) in endothelial cells. Downregulation of mTORC1 but not mTORC2 had similar effects showing that the inhibition of mTORC1 is responsible for the activation of MAPK. Treatment of endothelial cells with mTOR inhibitors in combination with MAPK inhibitors reduced endothelial cell survival, proliferation, migration and tube formation more significantly than either inhibition alone. Similarly, in a tumor xenograft model, the anti-angiogenic efficacy of mTOR inhibitors was enhanced by the pharmacological blockade of MAPK. Taken together these results show that blocking mTORC1 in endothelial cells activates MAPK and that a combined inhibition of MAPK and mTOR has additive anti-angiogenic effects. They also provide a rationale to target both mTOR and MAPK simultaneously in anti-angiogenic treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoleamine 2,3-dioxygenase (IDO) is an important therapeutic target for the treatment of diseases such as cancer that involve pathological immune escape. We have used the evolutionary docking algorithm EADock to design new inhibitors of this enzyme. First, we investigated the modes of binding of all known IDO inhibitors. On the basis of the observed docked conformations, we developed a pharmacophore model, which was then used to devise new compounds to be tested for IDO inhibition. We also used a fragment-based approach to design and to optimize small organic molecule inhibitors. Both approaches yielded several new low-molecular weight inhibitor scaffolds, the most active being of nanomolar potency in an enzymatic assay. Cellular assays confirmed the potential biological relevance of four different scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Studies were performed in normal subjects and in rats to assess the effect of angiotensin converting enzyme (ACE) inhibition on the kallikrein-kinin system. As ACE is identical to kininase II, one of the enzymes physiologically involved in bradykinin degradation, bradykinin may be expected to accumulate during ACE inhibition. 2. A competitive antagonist of bradykinin was used to explore in unanaesthetized rats the contribution of circulating bradykinin to blood pressure control under ACE inhibition. 3. No evidence was found for a role of this vasodilating peptide in the blood pressure lowering effect of acute ACE inhibition. 4. The plasma activity of carboxypeptidase N (= kininase I), another pathway of bradykinin degradation, remained intact during a 1 week course of treatment with an ACE inhibitor in normal subjects. This therefore indicates that bradykinin formed during ACE inhibition can still be metabolized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. HDAC inhibitors down-regulated the expression of numerous host defense genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, chemokines, growth factors, and costimulatory molecules as assessed by genome-wide microarray analyses or innate immune responses of macrophages and dendritic cells stimulated with Toll-like receptor agonists. HDAC inhibitors induced the expression of Mi-2β and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytoskeleton is essential for the structural organization of neurons and is influenced during development by excitatory stimuli such as activation of glutamate receptors. In particular, NMDA receptors are known to modulate the function of several cytoskeletal proteins and to influence cell morphology, but the underlying molecular and cellular mechanisms remain unclear. Here, we characterized the neurofilament subunit NF-M in cultures of developing mouse cortical neurons chronically exposed to NMDA receptor antagonists. Western blots analysis showed that treatment of cortical neurons with MK801 or AP5 shifted the size of NF-M towards higher molecular weights. Dephosphorylation assay revealed that this increased size of NF-M observed after chronic exposure to NMDA receptor antagonists was due to phosphorylation. Neurons treated with cyclosporin, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, also showed increased levels of phosphorylated NF-M. Moreover, analysis of neurofilament stability revealed that the phosphorylation of NF-M, resulting from NMDA receptor inhibition, enhanced the solubility of NF-M. Finally, cortical neurons cultured in the presence of the NMDA receptor antagonists MK801 and AP5 grew longer neurites. Together, these data indicate that a blockade of NMDA receptors during development of cortical neurons increases the phosphorylation state and the solubility of NF-M, thereby favoring neurite outgrowth. This also underlines that dynamics of the neurofilament and microtubule cytoskeleton is fundamental for growth processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and sensitive liquid chromatography-electrospray ionization mass spectrometry method was developed for the simultaneous quantification in human plasma of all selective serotonin reuptake inhibitors (citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline) and their main active metabolites (desmethyl-citalopram and norfluoxetine). A stable isotope-labeled internal standard was used for each analyte to compensate for the global method variability, including extraction and ionization variations. After sample (250μl) pre-treatment with acetonitrile (500μl) to precipitate proteins, a fast solid-phase extraction procedure was performed using mixed mode Oasis MCX 96-well plate. Chromatographic separation was achieved in less than 9.0min on a XBridge C18 column (2.1×100mm; 3.5μm) using a gradient of ammonium acetate (pH 8.1; 50mM) and acetonitrile as mobile phase at a flow rate of 0.3ml/min. The method was fully validated according to Société Française des Sciences et Techniques Pharmaceutiques protocols and the latest Food and Drug Administration guidelines. Six point calibration curves were used to cover a large concentration range of 1-500ng/ml for citalopram, desmethyl-citalopram, paroxetine and sertraline, 1-1000ng/ml for fluoxetine and fluvoxamine, and 2-1000ng/ml for norfluoxetine. Good quantitative performances were achieved in terms of trueness (84.2-109.6%), repeatability (0.9-14.6%) and intermediate precision (1.8-18.0%) in the entire assay range including the lower limit of quantification. Internal standard-normalized matrix effects were lower than 13%. The accuracy profiles (total error) were mainly included in the acceptance limits of ±30% for biological samples. The method was successfully applied for routine therapeutic drug monitoring of more than 1600 patient plasma samples over 9 months. The β-expectation tolerance intervals determined during the validation phase were coherent with the results of quality control samples analyzed during routine use. This method is therefore precise and suitable both for therapeutic drug monitoring and pharmacokinetic studies in most clinical laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing antifungal agents are still confronted to activities limited to specific fungal species and to the development of resistance. Several improvements are possible either by tackling and overcoming resistance or exacerbating the activity of existing antifungal agents. In Candida glabrata, azole resistance is almost exclusively mediated by ABC transporters (including C. glabrata CDR1 [CgCDR1] and CgCDR2) via gain-of-function mutations in the transcriptional activator CgPDR1 or by mitochondrial dysfunctions. We also observed that azole resistance was correlating with increasing virulence and fitness of C. glabrata in animal models of infection. This observation motivated the re-exploitation of ABC transporter inhibitors as a possible therapeutic intervention to decrease not only the development of azole resistance but also to interfere with the virulence of C. glabrata. Milbemycins are known ABC transporter inhibitors, and here we used commercially available milbemycin A3/A4 oxim derivatives to verify this effect. As expected, the derivatives were inhibiting C. glabrata efflux with the highest activity for A3 oxim below 1 μg/ml. More surprising was that oxim derivatives had intrinsic fungicidal activity above 3.2 μg/ml, thus highlighting effects additional to the efflux inhibition. Similar values were obtained with C. albicans. Our data show that the fungicidal activity could be related to reactive oxygen species formation in these species. Transcriptional analysis performed both in C. glabrata and C. albicans exposed to A3 oxim highlighted a core of commonly regulated genes involved in stress responses, including genes involved in oxidoreductive processes, protein ubiquitination, and vesicle trafficking, as well as mitogen-activated protein kinases. However, the transcript profiles contained also species-specific signatures. Following these observations, experimental treatments of invasive infections were performed in mice treated with the commercial A3/A4 oxim preparation alone or in combination with fluconazole. Tissue burden analysis revealed that oxims on their own were able to decrease fungal burdens in both Candida species. In azole-resistant isolates, oxims acted synergistically in vivo with fluconazole to reduce fungal burden to levels of azole-susceptible isolates. In conclusion, we show here the potential of milbemycins not only as drug efflux inhibitors but also as effective fungal growth inhibitors in C. glabrata and C. albicans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le cancer colorectal est la 3ème cause de décès liée au cancer dans l'Europe de l'Ouest et nécessite une prise en charge pluridisciplinaire. Les thérapies anticancéreuses récentes développées visent à inhiber les voies de signalisation cellulaires responsables de la prolifération des cellules tumorales. L'inhibition de la voie de signalisation cellulaire mTOR, est une stratégie prometteuse. En effet, mTOR est souvent suractivé dans les cellules du cancer colorectal et régule la croissance, la prolifération et la survie cellulaire. De nombreuses études récentes ont démontrés l'importance de l'activité de mTOR dans le développement du cancer colorectal et l'efficacité anti-tumorale des inhibiteurs allostériques de mTOR, telle que la rapamycine. Récemment, une nouvelle classe d'inhibiteur de mTOR, notamment PP242 et NVP-BEZ235, agissant comme inhibiteur ATP- compétitif a été développée. L'efficacité de ces inhibiteurs n'a pas été démontrée dans le contexte du cancer colorectal. Dans cette étude, nous avons comparé l'effet de PP242, un inhibiteur ATP-compétitif de mTOR et NVP-BEZ235, un inhibiteur dual de PI3K/mTOR par rapport à la rapamycine. Nous avons étudié, in vitro, leur effet sur la croissance, la prolifération et la survie cellulaire sur des lignées cellulaires du cancer du colon (LS174, SW480 et DLD-1) et, in vivo, sur la croissance de xénogreffes dans un modèle murin. Nous avons émis l'hypothèse que l'effet des ces nouveaux inhibiteurs seraient plus importants qu'avec la rapamycine. Nous avons observé que le PP242 et le NVP-BEZ235 réduisent significativement et de façon plus marquée que la rapamycine la croissance, la prolifération et la survie cellulaire des cellules LS174T et DLD-1. Ces inhibiteurs réduisent également la prolifération et la survie cellulaire des cellules SW480 alors que celles-ci étaient résistantes à la rapamycine. Nous avons également observé que les inhibiteurs PP242 et NVP-BEZ235 réduisaient la croissance des xénogreffes avec les lignées cellulaires LS174 et SW480. Finalement, nous avons remarqué que l'effet anti-tumoral des inhibiteurs ATP-compétitifs de mTOR était potentialisé par l'U0126, un inhibiteur de MEK/MAPK, souvent activé dans les voies de signalisation cellulaire du cancer colorectal. En conclusion, nous avons observé que les inhibiteurs ATP-compétitifs de mTOR bloquent la croissance de cellules tumorales du cancer colorectal in vitro et in vivo. Ces résultats démontrent que ces inhibiteurs représentent une option thérapeutique prometteuse dans le traitement du cancer colorectal et méritent d'être évalués dans des études cliniques.