210 resultados para CT, Radiation Dose, Image Quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer-aided diagnosis. This work proposes a fully-automatic method for measuring image quality of three-dimensional (3D) structural MRI. Quality measures are derived by analyzing the air background of magnitude images and are capable of detecting image degradation from several sources, including bulk motion, residual magnetization from incomplete spoiling, blurring, and ghosting. The method has been validated on 749 3D T(1)-weighted 1.5T and 3T head scans acquired at 36 Alzheimer's Disease Neuroimaging Initiative (ADNI) study sites operating with various software and hardware combinations. Results are compared against qualitative grades assigned by the ADNI quality control center (taken as the reference standard). The derived quality indices are independent of the MRI system used and agree with the reference standard quality ratings with high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be of great value for both research and routine clinical imaging. It could greatly improve workflow through its ability to rule out the need for a repeat scan while the patient is still in the magnet bore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Advisa MRI system is designed to safely undergo magnetic resonance imaging (MRI). Its influence on image quality is not well known. OBJECTIVE: To evaluate cardiac magnetic resonance (CMR) image quality and to characterize myocardial contraction patterns by using the Advisa MRI system. METHODS: In this international trial with 35 participating centers, an Advisa MRI system was implanted in 263 patients. Of those, 177 were randomized to the MRI group and 150 underwent MRI scans at the 9-12-week visit. Left ventricular (LV) and right ventricular (RV) cine long-axis steady-state free precession MR images were graded for quality. Signal loss along the implantable pulse generator and leads was measured. The tagging CMR data quality was assessed as the percentage of trackable tagging points on complementary spatial modulation of magnetization acquisitions (n=16) and segmental circumferential fiber shortening was quantified. RESULTS: Of all cine long-axis steady-state free precession acquisitions, 95% of LV and 98% of RV acquisitions were of diagnostic quality, with 84% and 93%, respectively, being of good or excellent quality. Tagging points were trackable from systole into early diastole (360-648 ms after the R-wave) in all segments. During RV pacing, tagging demonstrated a dyssynchronous contraction pattern, which was not observed in nonpaced (n = 4) and right atrial-paced (n = 8) patients. CONCLUSIONS: In the Advisa MRI study, high-quality CMR images for the assessment of cardiac anatomy and function were obtained in most patients with an implantable pacing system. In addition, this study demonstrated the feasibility of acquiring tagging data to study the LV function during pacing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impressive developments in X-ray imaging are associated with X-ray phase contrast computed tomography based on grating interferometry, a technique that provides increased contrast compared with conventional absorption-based imaging. A new "single-step" method capable of separating phase information from other contributions has been recently proposed. This approach not only simplifies data-acquisition procedures, but, compared with the existing phase step approach, significantly reduces the dose delivered to a sample. However, the image reconstruction procedure is more demanding than for traditional methods and new algorithms have to be developed to take advantage of the "single-step" method. In the work discussed in this paper, a fast iterative image reconstruction method named OSEM (ordered subsets expectation maximization) was applied to experimental data to evaluate its performance and range of applicability. The OSEM algorithm with different subsets was also characterized by comparison of reconstruction image quality and convergence speed. Computer simulations and experimental results confirm the reliability of this new algorithm for phase-contrast computed tomography applications. Compared with the traditional filtered back projection algorithm, in particular in the presence of a noisy acquisition, it furnishes better images at a higher spatial resolution and with lower noise. We emphasize that the method is highly compatible with future X-ray phase contrast imaging clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the impact of computing parameters and the location of volumes of interest (VOI) on the calculation of 3D noise power spectrum (NPS) in order to determine an optimal set of computing parameters and propose a robust method for evaluating the noise properties of imaging systems. Noise stationarity in noise volumes acquired with a water phantom on a 128-MDCT and a 320-MDCT scanner were analyzed in the spatial domain in order to define locally stationary VOIs. The influence of the computing parameters in the 3D NPS measurement: the sampling distances bx,y,z and the VOI lengths Lx,y,z, the number of VOIs NVOI and the structured noise were investigated to minimize measurement errors. The effect of the VOI locations on the NPS was also investigated. Results showed that the noise (standard deviation) varies more in the r-direction (phantom radius) than z-direction plane. A 25 × 25 × 40 mm(3) VOI associated with DFOV = 200 mm (Lx,y,z = 64, bx,y = 0.391 mm with 512 × 512 matrix) and a first-order detrending method to reduce structured noise led to an accurate NPS estimation. NPS estimated from off centered small VOIs had a directional dependency contrary to NPS obtained from large VOIs located in the center of the volume or from small VOIs located on a concentric circle. This showed that the VOI size and location play a major role in the determination of NPS when images are not stationary. This study emphasizes the need for consistent measurement methods to assess and compare image quality in CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumors in non-Hodgkin lymphoma (NHL) patients are often proximal to the major blood vessels in the abdomen or neck. In external-beam radiotherapy, these tumors present a challenge because imaging resolution prevents the beam from being targeted to the tumor lesion without also irradiating the artery wall. This problem has led to potentially life-threatening delayed toxicity. Because radioimmunotherapy has resulted in long-term survival of NHL patients, we investigated whether the absorbed dose (AD) to the artery wall in radioimmunotherapy of NHL is of potential concern for delayed toxicity. SPECT resolution is not sufficient to enable dosimetric analysis of anatomic features of the thickness of the aortic wall. Therefore, we present a model of aortic wall toxicity based on data from 4 patients treated with (131)I-tositumomab. METHODS: Four NHL patients with periaortic tumors were administered pretherapeutic (131)I-tositumomab. Abdominal SPECT and whole-body planar images were obtained at 48, 72, and 144 h after tracer administration. Blood-pool activity concentrations were obtained from regions of interest drawn on the heart on the planar images. Tumor and blood activity concentrations, scaled to therapeutic administered activities-both standard and myeloablative-were input into a geometry and tracking model (GEANT, version 4) of the aorta. The simulated energy deposited in the arterial walls was collected and fitted, and the AD and biologic effective dose values to the aortic wall and tumors were obtained for standard therapeutic and hypothetical myeloablative administered activities. RESULTS: Arterial wall ADs from standard therapy were lower (0.6-3.7 Gy) than those typical from external-beam therapy, as were the tumor ADs (1.4-10.5 Gy). The ratios of tumor AD to arterial wall AD were greater for radioimmunotherapy by a factor of 1.9-4.0. For myeloablative therapy, artery wall ADs were in general less than those typical for external-beam therapy (9.4-11.4 Gy for 3 of 4 patients) but comparable for 1 patient (32.6 Gy). CONCLUSION: Blood vessel radiation dose can be estimated using the software package 3D-RD combined with GEANT modeling. The dosimetry analysis suggested that arterial wall toxicity is highly unlikely in standard dose radioimmunotherapy but should be considered a potential concern and limiting factor in myeloablative therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'objectif de ce travail est le développement d'une méthode de caractérisation objective de la qualité d'image s'appliquant à des systèmes de mammographie analogique, utilisant un couple écran-film comme détecteur, et numérique, basé sur une technologie semi-conductrice, ceci en vue de la comparaison de leurs performances. La méthode développée tient compte de la gamme dynamique du détecteur, de la détectabilité de structures de haut contraste, simulant des microcalcifications, et de structures de bas contraste, simulant des opacités (nodules tumoraux). La méthode prend également en considération le processus de visualisation de l'image, ainsi que la réponse de l'observateur. Pour réaliser ceci, un objet-test ayant des propriétés proches de celles d'un sein comprimé, composé de différents matériaux équivalents aux tissus, allant du glandulaire à l'adipeux, et comprenant des zones permettant la simulation de structures de haut et bas contraste, ainsi que la mesure de la résolution et celle du bruit, a été développé et testé. L'intégration du processus de visualisation a été réalisée en utilisant une caméra CCD mesurant directement les paramètres de qualité d'image, à partir de l'image de l'objet-test, dans une grandeur physique commune au système numérique et analogique, à savoir la luminance arrivant sur l'oeil de l'observateur. L'utilisation d'une grandeur synthétique intégrant dans un même temps, le contraste, le bruit et la résolution rend possible une comparaison objective entre les deux systèmes de mammographie. Un modèle mathématique, simulant la réponse d'un observateur et intégrant les paramètres de base de qualité d'image, a été utilisé pour calculer la détectabilité de structures de haut et bas contraste en fonction du type de tissu sur lequel celles-ci se trouvent. Les résultats obtenus montrent qu'à dose égale la détectabilité des structures est significativement plus élevée avec le système de mammographie numérique qu'avec le système analogique. Ceci est principalement lié au fait que le bruit du système numérique est plus faible que celui du système analogique. Les résultats montrent également que la méthodologie, visant à comparer des systèmes d'imagerie numérique et analogique en utilisant un objet-test à large gamme dynamique ainsi qu'une caméra, peut être appliquée à d'autres modalités radiologiques, ainsi qu'à une démarche d'optimisation des conditions de lecture des images.<br/><br/>The goal of this work was to develop a method to objectively compare the performance of a digital and a screen-film mammography system in terms of image quality and patient dose. We propose a method that takes into account the dynamic range of the image detector and the detection of high contrast (for microcalcifications) and low contrast (for masses or tumoral nodules) structures. The method also addresses the problems of image visualization and the observer response. A test object, designed to represent a compressed breast, was constructed from various tissue equivalent materials ranging from purely adipose to purely glandular composition. Different areas within the test object permitted the evaluation of low and high contrast detection, spatial resolution, and image noise. All the images (digital and conventional) were captured using a CCD camera to include the visualization process in the image quality assessment. In this way the luminance reaching the viewer?s eyes can be controlled for both kinds of images. A global quantity describing image contrast, spatial resolution and noise, and expressed in terms of luminance at the camera, can then be used to compare the two technologies objectively. The quantity used was a mathematical model observer that calculates the detectability of high and low contrast structures as a function of the background tissue. Our results show that for a given patient dose, the detection of high and low contrast structures is significantly better for the digital system than for the conventional screen-film system studied. This is mainly because the image noise is lower for the digital system than for the screen-film detector. The method of using a test object with a large dynamic range combined with a camera to compare conventional and digital imaging modalities can be applied to other radiological imaging techniques. In particular it could be used to optimize the process of radiographic film reading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a chronic cardiovascular disease that involves the thicken¬ing of the artery walls as well as the formation of plaques (lesions) causing the narrowing of the lumens, in vessels such as the aorta, the coronary and the carotid arteries. Magnetic resonance imaging (MRI) is a promising modality for the assessment of atherosclerosis, as it is a non-invasive and patient-friendly procedure that does not use ionizing radiation. MRI offers high soft tissue con¬trast already without the need of intravenous contrast media; while modifica¬tion of the MR pulse sequences allows for further adjustment of the contrast for specific diagnostic needs. As such, MRI can create angiographic images of the vessel lumens to assess stenoses at the late stage of the disease, as well as blood flow-suppressed images for the early investigation of the vessel wall and the characterization of the atherosclerotic plaques. However, despite the great technical progress that occurred over the past two decades, MRI is intrinsically a low sensitive technique and some limitations still exist in terms of accuracy and performance. A major challenge for coronary artery imaging is respiratory motion. State- of-the-art diaphragmatic navigators rely on an indirect measure of motion, per¬form a ID correction, and have long and unpredictable scan time. In response, self-navigation (SM) strategies have recently been introduced that offer 100% scan efficiency and increased ease of use. SN detects respiratory motion di¬rectly from the image data obtained at the level of the heart, and retrospectively corrects the same data before final image reconstruction. Thus, SN holds po-tential for multi-dimensional motion compensation. To this regard, this thesis presents novel SN methods that estimate 2D and 3D motion parameters from aliased sub-images that are obtained from the same raw data composing the final image. Combination of all corrected sub-images produces a final image with reduced motion artifacts for the visualization of the coronaries. The first study (section 2.2, 2D Self-Navigation with Compressed Sensing) consists of a method for 2D translational motion compensation. Here, the use of com- pressed sensing (CS) reconstruction is proposed and investigated to support motion detection by reducing aliasing artifacts. In healthy human subjects, CS demonstrated an improvement in motion detection accuracy with simula¬tions on in vivo data, while improved coronary artery visualization was demon¬strated on in vivo free-breathing acquisitions. However, the motion of the heart induced by respiration has been shown to occur in three dimensions and to be more complex than a simple translation. Therefore, the second study (section 2.3,3D Self-Navigation) consists of a method for 3D affine motion correction rather than 2D only. Here, different techniques were adopted to reduce background signal contribution in respiratory motion tracking, as this can be adversely affected by the static tissue that surrounds the heart. The proposed method demonstrated to improve conspicuity and vi¬sualization of coronary arteries in healthy and cardiovascular disease patient cohorts in comparison to a conventional ID SN method. In the third study (section 2.4, 3D Self-Navigation with Compressed Sensing), the same tracking methods were used to obtain sub-images sorted according to the respiratory position. Then, instead of motion correction, a compressed sensing reconstruction was performed on all sorted sub-image data. This process ex¬ploits the consistency of the sorted data to reduce aliasing artifacts such that the sub-image corresponding to the end-expiratory phase can directly be used to visualize the coronaries. In a healthy volunteer cohort, this strategy improved conspicuity and visualization of the coronary arteries when compared to a con¬ventional ID SN method. For the visualization of the vessel wall and atherosclerotic plaques, the state- of-the-art dual inversion recovery (DIR) technique is able to suppress the signal coming from flowing blood and provide positive wall-lumen contrast. How¬ever, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. In response and as a fourth study of this thesis (chapter 3, Vessel Wall MRI of the Carotid Arteries), a phase-sensitive DIR method has been implemented and tested in the carotid arteries of a healthy volunteer cohort. By exploiting the phase information of images acquired after DIR, the proposed phase-sensitive method enhances wall-lumen contrast while widens the window of opportunity for image acquisition. As a result, a 3-fold increase in volumetric coverage is obtained at no extra cost in scanning time, while image quality is improved. In conclusion, this thesis presented novel methods to address some of the main challenges for MRI of atherosclerosis: the suppression of motion and flow artifacts for improved visualization of vessel lumens, walls and plaques. Such methods showed to significantly improve image quality in human healthy sub¬jects, as well as scan efficiency and ease-of-use of MRI. Extensive validation is now warranted in patient populations to ascertain their diagnostic perfor¬mance. Eventually, these methods may bring the use of atherosclerosis MRI closer to the clinical practice. Résumé L'athérosclérose est une maladie cardiovasculaire chronique qui implique le épaississement de la paroi des artères, ainsi que la formation de plaques (lé¬sions) provoquant le rétrécissement des lumières, dans des vaisseaux tels que l'aorte, les coronaires et les artères carotides. L'imagerie par résonance magné¬tique (IRM) est une modalité prometteuse pour l'évaluation de l'athérosclérose, car il s'agit d'une procédure non-invasive et conviviale pour les patients, qui n'utilise pas des rayonnements ionisants. L'IRM offre un contraste des tissus mous très élevé sans avoir besoin de médias de contraste intraveineux, tan¬dis que la modification des séquences d'impulsions de RM permet en outre le réglage du contraste pour des besoins diagnostiques spécifiques. À ce titre, l'IRM peut créer des images angiographiques des lumières des vaisseaux pour évaluer les sténoses à la fin du stade de la maladie, ainsi que des images avec suppression du flux sanguin pour une première enquête des parois des vais¬seaux et une caractérisation des plaques d'athérosclérose. Cependant, malgré les grands progrès techniques qui ont eu lieu au cours des deux dernières dé¬cennies, l'IRM est une technique peu sensible et certaines limitations existent encore en termes de précision et de performance. Un des principaux défis pour l'imagerie de l'artère coronaire est le mou¬vement respiratoire. Les navigateurs diaphragmatiques de pointe comptent sur une mesure indirecte de mouvement, effectuent une correction 1D, et ont un temps d'acquisition long et imprévisible. En réponse, les stratégies d'auto- navigation (self-navigation: SN) ont été introduites récemment et offrent 100% d'efficacité d'acquisition et une meilleure facilité d'utilisation. Les SN détectent le mouvement respiratoire directement à partir des données brutes de l'image obtenue au niveau du coeur, et rétrospectivement corrigent ces mêmes données avant la reconstruction finale de l'image. Ainsi, les SN détiennent un poten¬tiel pour une compensation multidimensionnelle du mouvement. A cet égard, cette thèse présente de nouvelles méthodes SN qui estiment les paramètres de mouvement 2D et 3D à partir de sous-images qui sont obtenues à partir des mêmes données brutes qui composent l'image finale. La combinaison de toutes les sous-images corrigées produit une image finale pour la visualisation des coronaires ou les artefacts du mouvement sont réduits. La première étude (section 2.2,2D Self-Navigation with Compressed Sensing) traite d'une méthode pour une compensation 2D de mouvement de translation. Ici, on étudie l'utilisation de la reconstruction d'acquisition comprimée (compressed sensing: CS) pour soutenir la détection de mouvement en réduisant les artefacts de sous-échantillonnage. Chez des sujets humains sains, CS a démontré une amélioration de la précision de la détection de mouvement avec des simula¬tions sur des données in vivo, tandis que la visualisation de l'artère coronaire sur des acquisitions de respiration libre in vivo a aussi été améliorée. Pourtant, le mouvement du coeur induite par la respiration se produit en trois dimensions et il est plus complexe qu'un simple déplacement. Par conséquent, la deuxième étude (section 2.3, 3D Self-Navigation) traite d'une méthode de cor¬rection du mouvement 3D plutôt que 2D uniquement. Ici, différentes tech¬niques ont été adoptées pour réduire la contribution du signal du fond dans le suivi de mouvement respiratoire, qui peut être influencé négativement par le tissu statique qui entoure le coeur. La méthode proposée a démontré une amélioration, par rapport à la procédure classique SN de correction 1D, de la visualisation des artères coronaires dans le groupe de sujets sains et des pa¬tients avec maladies cardio-vasculaires. Dans la troisième étude (section 2.4,3D Self-Navigation with Compressed Sensing), les mêmes méthodes de suivi ont été utilisées pour obtenir des sous-images triées selon la position respiratoire. Au lieu de la correction du mouvement, une reconstruction de CS a été réalisée sur toutes les sous-images triées. Cette procédure exploite la cohérence des données pour réduire les artefacts de sous- échantillonnage de telle sorte que la sous-image correspondant à la phase de fin d'expiration peut directement être utilisée pour visualiser les coronaires. Dans un échantillon de volontaires en bonne santé, cette stratégie a amélioré la netteté et la visualisation des artères coronaires par rapport à une méthode classique SN ID. Pour la visualisation des parois des vaisseaux et de plaques d'athérosclérose, la technique de pointe avec double récupération d'inversion (DIR) est capa¬ble de supprimer le signal provenant du sang et de fournir un contraste posi¬tif entre la paroi et la lumière. Pourtant, il est difficile d'obtenir un contraste optimal car cela est soumis à la variabilité du rythme cardiaque. Par ailleurs, l'imagerie DIR est inefficace du point de vue du temps et les acquisitions "mul- tislice" peuvent conduire à des temps de scan prolongés. En réponse à ce prob¬lème et comme quatrième étude de cette thèse (chapitre 3, Vessel Wall MRI of the Carotid Arteries), une méthode de DIR phase-sensitive a été implémenté et testé

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we propose a method for prospective motion correction in MRI using a novel image navigator module, which is triggered by a free induction decay (FID) navigator. Only when motion occurs, the image navigator is run and new positional information is obtained through image registration. The image navigator was specifically designed to match the impact on the magnetization and the acoustic noise of the host sequence. This detection-correction scheme was implemented for an MP-RAGE sequence and 5 healthy volunteers were scanned at 3T while performing various head movements. The correction performance was demonstrated through automated brain segmentation and an image quality index whose results are sensitive to motion artifacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The goal of the present study was to use a three-dimensional (3D) gradient echo volume in combination with a fat-selective excitation as a 3D motion navigator (3D FatNav) for retrospective correction of microscopic head motion during high-resolution 3D structural scans of extended duration. The fat excitation leads to a 3D image that is itself sparse, allowing high parallel imaging acceleration factors - with the additional advantage of a minimal disturbance of the water signal used for the host sequence. METHODS: A 3D FatNav was inserted into two structural protocols: an inversion-prepared gradient echo at 0.33 × 0.33 × 1.00 mm resolution and a turbo spin echo at 600 μm isotropic resolution. RESULTS: Motion estimation was possible with high precision, allowing retrospective motion correction to yield clear improvements in image quality, especially in the conspicuity of very small blood vessels. CONCLUSION: The highly accelerated 3D FatNav allowed motion correction with noticeable improvements in image quality, even for head motion which was small compared with the voxel dimensions of the host sequence. Magn Reson Med 75:1030-1039, 2016. © 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraoperative cardiac imaging plays a key role during transcatheter aortic valve replacement. In recent years, new techniques and new tools for improved image quality and virtual navigation have been proposed, in order to simplify and standardize stent valve positioning and implantation. But routine performance of the new techniques may require major economic investments or specific knowledge and skills and, for this reason, they may not be accessible to the majority of cardiac centres involved in transcatheter valve replacement projects. Additionally, they still require injections of contrast medium to obtain computed images. Therefore, we have developed and describe here a very simple and intuitive method of positioning balloon-expandable stent valves, which represents the evolution of the 'dumbbell' technique for echocardiography-guided transcatheter valve replacement without angiography. This method, based on the partial inflation of the balloon catheter during positioning, traps the crimped valve in the aortic valve orifice and, consequently, very near to the ideal landing zone. It does not require specific echocardiographic knowledge; it does not require angiographies that increase the risk of postoperative kidney failure in elderly patients, and it can be also performed in centres not equipped with a hybrid operating room.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the feasibility, determine the optimal b-value, and assess the utility of 3-T diffusion-weighted MR imaging (DWI) of the spine in differentiating benign from pathologic vertebral compression fractures.Methods and Materials: Twenty patients with 38 vertebral compression fractures (24 benign, 14 pathologic) and 20 controls (total: 23 men, 17 women, mean age 56.2years) were included from December 2010 to May 2011 in this IRB-approved prospective study. MR imaging of the spine was performed on a 3-T unit with T1-w, fat-suppressed T2-w, gadolinium-enhanced fat-suppressed T1-w and zoomed-EPI (2D RF excitation pulse combined with reduced field-of-view single-shot echo-planar readout) diffusion-w (b-values: 0, 300, 500 and 700s/mm2) sequences. Two radiologists independently assessed zoomed-EPI image quality in random order using a 4-point scale: 1=excellent to 4=poor. They subsequently measured apparent diffusion coefficients (ADCs) in normal vertebral bodies and compression fractures, in consensus.Results: Lower b-values correlated with better image quality scores, with significant differences between b=300 (mean±SD=2.6±0.8), b=500 (3.0±0.7) and b=700 (3.6±0.6) (all p<0.001). Mean ADCs of normal vertebral bodies (n=162) were 0.23, 0.17 and 0.11×10-3mm2/s with b=300, 500 and 700s/mm2, respectively. In contrast, mean ADCs were 0.89, 0.70 and 0.59×10-3mm2/s for benign vertebral compression fractures and 0.79, 0.66 and 0.51×10-3mm2/s for pathologic fractures with b=300, 500 and 700s/mm2, respectively. No significant difference was found between ADCs of benign and pathologic fractures.Conclusion: 3-T DWI of the spine is feasible and lower b-values (300s/mm2) are recommended. However, our preliminary results show no advantage of DWI in differentiating benign from pathologic vertebral compression fractures.