119 resultados para COLLISION STRENGTHS
Resumo:
This review paper deals with the geology of the NW Indian Himalaya situated in the states of Jammu and Kashmir, Himachal Pradesh and Garhwal. The models and mechanisms discussed, concerning the tectonic and metamorphic history of the Himalayan range, are based on a new compilation of a geological map and cross sections, as well as on paleomagnetic, stratigraphic, petrologic, structural, metamorphic, thermobarometric and radiometric data. The protolith of the Himalayan range, the North Indian flexural passive margin of the Neo-Tethys ocean, consists of a Lower Proterozoic basement, intruded by 1.8-1.9 Ga bimodal magmatites, overlain by a horizontally stratified sequence of Upper Proterozoic to Paleocene sediments, intruded by 470-500 Ma old Ordovician mainly peraluminous s-type granites, Carboniferous tholeiitic to alkaline basalts and intruded and overlain by Permian tholeiitic continental flood basalts. No elements of the Archaen crystalline basement of the South Indian shield have been identified in the Himalayan range. Deformation of the Himalayan accretionary wedge resulted from the continental collision of India and Asia beginning some 65-55 Ma ago, after the NE-directed underthrusting of the Neo-Tethys oceanic crust below Asia and the formation of the Andean-type 103-50 (-41) Ma old Ladakh batholith to the north of the Indus Suture. Cylindrical in geometry, the Himalayan range consists, from NE to SW, from older to younger tectonic elements, of the following zones: 1) The 25 km wide Ladakh batholith and the Asian mantle wedge form the backstop of the growing Himalayan accretionary wedge. 2) The Indus Suture zone is composed of obducted slices of the oceanic crust, island arcs, like the Dras arc, overlain by Late Cretaceous fore arc basin sediments and the mainly Paleocene to Early Eocene and Miocene epi-sutural intra-continental Indus molasse. 3) The Late Paleocene to Eocene North Himalayan nappe stack, up to 40 km thick prior to erosion, consists of Upper Proterozoic to Paleocene rocks, with the eclogitic and coesite bearing Tso Morari gneiss nappe at its base. It includes a branch of the Central Himalayan detachment, the 22-18 Ma old Zanskar Shear zone that is intruded and dated by the 22 Ma Gumburanjun leucogranite; it reactivates the frontal thrusts of the SW-verging North Himalayan nappes. 4) The late Eocene-Miocene SW-directed High Himalayan or ``Crystalline'' nappe comprises Upper Proterozoic to Mesozoic sediments and Ordovician granites, identical to those of the North Himalayan nappes. The Main Central thrust at its base was created in a zone of Eocene to Early Oligocene anatexis by ductile detachment of the subducted Indian crust, below the pre-existing 25-35 km thick NE-directed Shikar Beh and SW-directed North Himalayan nappe stacks. 5) The late Miocene Lesser Himalayan thrust with the Main Boundary Thrust at its base consists of early Proterozoic to Cambrian rocks intruded by 1.8-1.9 Ga bimodal magmatites. The Subhimalaya is a thrust wedge of Himalayan fore deep basin sediments, composed of the Early Eocene marine Subathu marls and sandstones as well as the up to 8'000 m-thick Miocene to recent Ganga molasse, a coarsening upwards sequence of shales, sandstones and conglomerates. The active frontal thrust is covered by the sediments of the Indus-Ganga plains.
Resumo:
The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes.
Resumo:
Current limitations of coronary magnetic resonance angiography (MRA) include a suboptimal signal-to-noise ratio (SNR), which limits spatial resolution and the ability to visualize distal and branch vessel coronary segments. Improved SNR is expected at higher field strengths, which may provide improved spatial resolution. However, a number of potential adverse effects on image quality have been reported at higher field strengths. The limited availability of high-field systems equipped with cardiac-specific hardware and software has previously precluded successful in vivo human high-field coronary MRA data acquisition. In the present study we investigated the feasibility of human coronary MRA at 3.0 T in vivo. The first results obtained in nine healthy adult subjects are presented.
Resumo:
Abstract: The Altaids consist in a huge accretionary-type belt extending from Siberia through Mon-golia, northern China, Kyrgyzstan and Kazakhstan. They were formed from the Vendian through the Jurassic by the accretion of numerous displaced and exotic terranes (e.g. island arc, ribbon microcontinent, seamount, basaltic plateau, back-arc basin). The number, nature and origin of the terranes differ according to the palaeotectonic models of the different authors. Thanks to a geo- dynamic study (i.e. definition of tectonic settings and elaboration of geodynamic scenarios) and plate tectonics modelling, this work aims to present an alternative model explaining the Palaeozoic palaeotectonic evolution of the Altaids. Based on a large set of compiled geological data related to palaeogeography and geodyna¬mic (e.g. sedimentology, stratigraphy, palaeobiogeography, palaeomagnetism, magmatism, me- tamorphism, tectonic...), a partly new classification of the terranes and sutures implicated in the formation of the Altaids is proposed. In the aim to elaborate plate tectonics reconstructions, it is necessary to fragment the present arrangement of continents into consistent geological units. To avoid confusion with existing terminology (e.g. tectonic units, tectono-stratigraphic units, micro- continents, terranes, blocks...), the new concept of "Geodynamic Units (GDU)" was introduced. A terrane may be formed by a set of GDUs. It consists of a continental and/or oceanic fragment which has its own kinematic and geodynamic evolution for a given period. With the same ap-proach, the life span and type of the disappeared oceans is inferred thanks to the study of the mate-rial contained in suture zones. The interpretation of the tectonic settings within the GDUs comple-ted by the restoration of oceans leads to the elaboration of geodynamic scenarios. Since the Wilson cycle was presented in 1967, numerous works demonstrated that the continental growth is more complex and results from diverse geodynamic scenarios. The identification of these scenarios and their exploitation enable to elaborate plate tectonics models. The models are self-constraining (i.e. space and time constraints) and contest or confirm in turn the geodynamic scenarios which were initially proposed. The Altaids can be divided into three domains: (1) the Peri-Siberian, (2) the Kazakhstan, and (3) the Tarim-North China domains. The Peri-Siberian Domain consists of displaced (i.e. Sayan Terrane Tuva-Mongolian, Lake-Khamsara Terrane) and exotic terranes (i.e. Altai-Mongolian and Khangai-Argunsky Terrane) accreted to Siberia from the Vendian through the Ordovician. Fol-lowing the accretion of these terranes, the newly formed Siberia active margin remained active un-til its part collision with the Kazakhstan Superterrane in the Carboniferous. The eastern part of the active margin (i.e. East Mongolia) continued to act until the Permian when the North-China Tarim Superterrane collided with it. The geodynamic evolution of the eastern part of the Peri-Siberian Domain (i.e. Eastern Mongolia and Siberia) is complicated by the opening of the Mongol-Okhotsk Ocean in the Silurian. The Kazakhstan Domain is composed of several continental terranes of East Gondwana origin amalgamated together during the Ordovician-Silurian time. After these different orogenic events, the Kazakhstan Superterrane evolved as a single superterrane until its collision with a Tarim-North China related-terrane (i.e. Tianshan-Hanshan Terrane) and Siberian Continent during the Devonian. This new organisation of the continents imply a continued active margin from Siberia, to North China through the Kazakhstan Superterrane and the closure of the Junggar- Balkash Ocean which implied the oroclinal bending of the Kazakhstan Superterrane during the entire Carboniferous. The formation history of the Tarim-North China Domain is less complex. The Cambrian northern passive margin became active in the Ordovician. In the Silurian, the South Tianshan back-arc Ocean was open and led to the formation of the Tianshan-Hanshan Terrane which collided with the Kazakhstan Superterrane during the Devonian. The collision between Siberia and the eastern part of the Tarim-North China continents (i.e. Inner Mongolia), implied by the closure of the Solonker Ocean, took place in the Permian. Since this time, the major part of the Altaids was formed, the Mongol-Okhotsk Ocean only was still open and closed during the Jurassic. Résumé: La chaîne des Altaïdes est une importante chaîne d'accrétion qui s'étend en Sibérie, Mon-golie, Chine du Nord, Kirghizstan et Kazakhstan. Elle s'est formée durant la période du Vendian au Jurassique par l'accrétion de nombreux terranes déplacés ou exotiques (par exemple arc océa-nique, microcontinent, guyot, plateau basaltique, basin d'arrière-arc...). Le nombre, la nature ou encore l'origine diffèrent selon les modèles paléo-tectoniques proposés par les différents auteurs. Grâce à une étude géodynamique (c'est-à-dire définition des environnements tectoniques et éla-boration de scénarios géodynamiques) et à la modélisation de la tectonique des plaques, ce travail propose un modèle alternatif expliquant l'évolution paléo-tectonique des Altaïdes. Basé sur une large compilation de données géologiques pertinentes en termes de paléo-géographie et de géodynamique (par exemple sédimentologie, stratigraphie, paléo-biogéographie, paléomagnétisme, magmatisme, métamorphisme, tectonique...), une nouvelle classification des terranes et des sutures impliqués dans la formation des Altaïdes est proposée. Dans le but d'élabo¬rer des reconstructions de plaques tectoniques, il est nécessaire de fragmenter l'arrangement actuel des continents en unités tectoniques cohérentes. Afin d'éviter les confusions avec la terminolo¬gie existante (par exemple unité tectonique, unité tectono-stratigraphique, microcontinent, block, terrane...), le nouveau concept d' "Unité Géodynamique (UGD)" a été introduit. Un terrane est formé d'une ou plusieurs UGD et représente un fragment océanique ou continental défini pas sa propre cinétique et évolution géodynamique pour une période donnée. Parallèlement, la durée de vie et le type des océans disparus (c'est-à-dire principal ou secondaire) est déduite grâce à l'étude du matériel contenu dans les zones de sutures. L'interprétation des environnements tectoniques des UGD associés à la restauration des océans mène à l'élaboration de scénarios géodynamiques. Depuis que le Cycle de Wilson a été présenté en 1967, de nombreux travaux ont démontré que la croissance continentale peut résulter de divers scénarios géodynamiques. L'identification et l'ex-ploitation de ces scénarios permet finalement l'élaboration de modèles de tectonique des plaques. Les modèles sont auto-contraignants (c'est-à-dire contraintes spatiales et temporelles) et peuvent soit contester ou confirmer les scénarios géodynamiques initialement proposés. Les Altaïdes peuvent être divisées en trois domaines : (1) le Domaine Péri-Sibérien, (2) le Domaine Kazakh, et (3) le Domaine Tarim-Nord Chinois. Le Domaine Péri-Sibérien est composé de terranes déplacés (c'est-à-dire Terrane du Sayan, Tuva-Mongol et Lake-Khamsara) et exotiques (c'est-à-dire Terrane Altai-Mongol et Khangai-Argunsky) qui ont été accrétés au craton Sibérien durant la période du Vendien à l'Ordovicien. Suite à l'accrétion de ces terranes, la marge sud-est de la Sibérie nouvellement formée reste active jusqu'à sa collision partielle avec le Superterrane Ka-zakh au Carbonifère. La partie est de la marge active (c'est-à-dire Mongolie de l'est) continue son activité jusqu'au Permien lors de sa collision avec le Superterrane Tarim-Nord Chinois. L'évolu¬tion géodynamique de la partie est du Domaine Sibérien est compliquée par l'ouverture Silurienne de l'Océan Mongol-Okhotsk qui disparaîtra seulement au Jurassique. Le Domaine Kazakh est composé de plusieurs terranes d'origine est-Gondwanienne accrétés les uns avec les autres avant ou pendant le Silurien inférieur et leurs evolution successive sous la forme d'un seul superterrane. Le Superterrane Kazakh collisione avec un terrane Tarim-Nord Chinois (c'est-à-dire Terrane du Tianshan-Hanshan) durant le Dévonien et le continent Sibérien au Dévonien supérieur. Ce nouvel agencement des plaques induit une marge active continue le long des continents Sibérien, Kazakh et Nord Chinois et la fermeture de l'Océan Junggar-Balkash qui provoque le plissement oroclinal du Superterrane Kazakh durant le Carbonifère. L'histoire de la formation du Domaine Tarim-Nord Chinois est moins complexe. La marge passive nord Cambrienne devient active à l'Ordovicien et l'ouverture Silurienne du bassin d'arrière-arc du Tianshan sud mène à la formation du terrane du Tianshan-Hanshan. La collision Dévonienne entre ce dernier et le Superterrane Kazakh provoque la fermerture de l'Océan Tianshan sud. Finalement, la collision entre la Sibérie et la partie est du continent Tarim-Nord Chinois (c'est-à-dire Mongolie Intérieure) prend place durant le Permien suite à la fermeture de l'Océan Solonker. La majeure partie des Altaïdes est alors formée, seul l'Océan Mongol-Okhotsk est encore ouvert. Ce dernier se fermera seulement au Jurassique.
Resumo:
PURPOSE: To compare different techniques for positive contrast imaging of susceptibility markers with MRI for three-dimensional visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. MATERIALS AND METHODS: Six different positive contrast techniques are investigated for their ability to image at 3 Tesla a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. RESULTS: The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided, and strengths and weaknesses of the different approaches are discussed. CONCLUSION: The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data are now available.
Resumo:
To constrain the age of strike-slip shear, related granitic magmatism, and cooling along the Insubric line, 29 size fractions of monazite and xenotime were dated by the U-Pb method, and a series of 25 Rb-Sr and Ar-40/Ar-39 ages were measured on different size fractions of muscovite and biotite. The three pegmatitic intrusions analyzed truncate high-grade metamorphic mylonite gneisses of the Simplon shear zone, a major Alpine structure produced in association with dextral strike-slip movements along the southern edge of the European plate, after collision with its Adriatic indenter. Pegmatites and aplites were produced between 29 and 25 Ma in direct relation to right-lateral shear along the Insubric line, by melting of continental crust having Sr-87/Sr-86 between 0.7199 and 0.7244 at the time of melting. High-temperature dextral strike-slip shear was active at 29.2 +/- 0.2 (2 sigma) Ma, and it terminated before 26.4 +/- 0.1 Ma. During dike injection, temperatures in the country rocks of the Isorno-Orselina and Monte Rosa structural units did not exceed approximate to 500 degrees C, leading to fast initial cooling, followed by slower cooling to approximate to 350 degrees C within several million years. In one case, initial cooling to approximate to 500 degrees C was significantly delayed by about 4 m.y., with final cooling to approximate to 300 degrees C at 20-19 Ma in all units. For the period between 29 and 19 Ma, cooling of the three sample localities was non-uniform in space and time, with significant variations on the kilometre scale. These differences are most likely due to strongly varying heat flow, and/or heterogeneous distribution of unroofing rates within the continuously deforming Insubric line. If entirely ascribed to differences in unroofing, corresponding rates would vary between 0.5 and 2.5 mm/y, for a thermal gradient of 30 degrees/km.
Resumo:
Following the decision of the Swiss Association for Home Care Services to adopt the Resident Assessment Instrument (RAI), the RAI-Home Care is gradually implemented in all home care services in Switzerland. Based on a comprehensive geriatric assessment, the RAI not only allows to establish an individualized plan of care, but also generates quality indicators and a case-mix classification system that helps financing and planning resources. This article describes the five steps of the RAI-Home Care process and discusses the strengths, future and limitations of the RAI.
Resumo:
Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.
Resumo:
Light adaptation is crucial for coping with the varying levels of ambient light. Using high-density electroencephalography (EEG), we investigated how adaptation to light of different colors affects brain responsiveness. In a within-subject design, sixteen young participants were adapted first to dim white light and then to blue, green, red, or white bright light (one color per session in a randomized order). Immediately after both dim and bright light adaptation, we presented brief light pulses and recorded event-related potentials (ERPs). We analyzed ERP response strengths and brain topographies and determined the underlying sources using electrical source imaging. Between 150 and 261ms after stimulus onset, the global field power (GFP) was higher after dim than bright light adaptation. This effect was most pronounced with red light and localized in the frontal lobe, the fusiform gyrus, the occipital lobe and the cerebellum. After bright light adaptation, within the first 100ms after light onset, stronger responses were found than after dim light adaptation for all colors except for red light. Differences between conditions were localized in the frontal lobe, the cingulate gyrus, and the cerebellum. These results indicate that very short-term EEG brain responses are influenced by prior light adaptation and the spectral quality of the light stimulus. We show that the early EEG responses are differently affected by adaptation to different colors of light which may contribute to known differences in performance and reaction times in cognitive tests.
Resumo:
AIM: This study assessed the mental health of parents of children with inflammatory bowel disease (IBD), compared their mental health with age-matched and gender-matched references and examined parental and child predictors for mental health problems. METHODS: A total of 125 mothers and 106 fathers of 125 children with active and inactive IBD from the Swiss IBD multicentre cohort study were included. Parental mental health was assessed by the Symptom Checklist 27 and child behaviour problems by the Strengths and Difficulties Questionnaire. Child medical data were extracted from hospital records. RESULTS: While the mothers reported lower mental health, the fathers' mental health was similar, or even better, than in age-matched and gender-matched community controls. In both parents, shorter time since the child's diagnosis was associated with poorer mental health. In addition, the presence of their own IBD diagnosis and child behaviour problems predicted maternal mental health problems. CONCLUSIONS: Parents of children with IBD may need professional support when their child is diagnosed, to mitigate distress. This, in turn, may help the child to adjust better to IBD. Particular attention should be paid to mothers who have their own IBD diagnosis and whose children display behaviour problems.
Resumo:
In addition to the importance of sample preparation and extract separation, MS detection is a key factor in the sensitive quantification of large undigested peptides. In this article, a linear ion trap MS (LIT-MS) and a triple quadrupole MS (TQ-MS) have been compared in the detection of large peptides at subnanomolar concentrations. Natural brain natriuretic peptide, C-peptide, substance P and D-Junk-inhibitor peptide, a full D-amino acid therapeutic peptide, were chosen. They were detected by ESI and simultaneous MS(1) and MS(2) acquisitions. With direct peptide infusion, MS(2) spectra revealed that fragmentation was peptide dependent, milder on the LIT-MS and required high collision energies on the TQ-MS to obtain high-intensity product ions. Peptide adsorption on surfaces was overcome and peptide dilutions ranging from 0.1 to 25 nM were injected onto an ultra high-pressure LC system with a 1 mm id analytical column and coupled with the MS instruments. No difference was observed between the two instruments when recording in LC-MS(1) acquisitions. However, in LC-MS(2) acquisitions, a better sensitivity in the detection of large peptides was observed with the LIT-MS. Indeed, with the three longer peptides, the typical fragmentation in the TQ-MS resulted in a dramatic loss of sensitivity (> or = 10x).
Resumo:
BACKGROUND: Practicing physicians are faced with many medical decisions daily. These are mainly influenced by personal experience but should also consider patient preferences and the scientific evidence reflected by a constantly increasing number of medical publications and guidelines. With the objective of optimal medical treatment, the concept of evidence-based medicine is founded on these three aspects. It should be considered that there is a high risk of misinterpreting evidence, leading to medical errors and adverse effects without knowledge of the methodological background. OBJECTIVES: This article explains the concept of systematic error (bias) and its importance. Causes and effects as well as methods to minimize bias are discussed. This information should impart a deeper understanding, leading to a better assessment of studies and implementation of its recommendations in daily medical practice. CONCLUSION: Developed by the Cochrane Collaboration, the risk of bias (RoB) tool is an assessment instrument for the potential of bias in controlled trials. Good handling, short processing time, high transparency of judgements and a graphical presentation of findings that is easily comprehensible are among its strengths. Attached to this article the German translation of the RoB tool is published. This should facilitate the applicability for non-experts and moreover, support evidence-based medical decision-making.
Resumo:
Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
Resumo:
ABSTRACT: While diagnosis has traditionally been viewed as an essential concept in medicine, particularly when selecting treatments, we suggest that the use of diagnosis alone may be limited, particularly within mental health. The concept of clinical case formulation advocates for collaboratively working with patients to identify idiosyncratic aspects of their presentation and select interventions on this basis. Identifying individualized contributing factors, and how these could influence the person's presentation, in addition to attending to personal strengths, may allow the clinician a deeper understanding of a patient, result in a more personalized treatment approach, and potentially provide a better clinical outcome.
Resumo:
In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.