82 resultados para COLLECTIVE EXCITATIONS
Resumo:
Neurocritical care depends, in part, on careful patient monitoring but as yet there are little data on what processes are the most important to monitor, how these should be monitored, and whether monitoring these processes is cost-effective and impacts outcome. At the same time, bioinformatics is a rapidly emerging field in critical care but as yet there is little agreement or standardization on what information is important and how it should be displayed and analyzed. The Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine, and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to begin to address these needs. International experts from neurosurgery, neurocritical care, neurology, critical care, neuroanesthesiology, nursing, pharmacy, and informatics were recruited on the basis of their research, publication record, and expertise. They undertook a systematic literature review to develop recommendations about specific topics on physiologic processes important to the care of patients with disorders that require neurocritical care. This review does not make recommendations about treatment, imaging, and intraoperative monitoring. A multidisciplinary jury, selected for their expertise in clinical investigation and development of practice guidelines, guided this process. The GRADE system was used to develop recommendations based on literature review, discussion, integrating the literature with the participants' collective experience, and critical review by an impartial jury. Emphasis was placed on the principle that recommendations should be based on both data quality and on trade-offs and translation into clinical practice. Strong consideration was given to providing pragmatic guidance and recommendations for bedside neuromonitoring, even in the absence of high quality data.
Resumo:
Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating 'rafts' to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting.
Resumo:
This review article summarizes evidence that multisensory experiences at one point in time have long-lasting effects on subsequent unisensory visual and auditory object recognition. The efficacy of single-trial exposure to task-irrelevant multisensory events is its ability to modulate memory performance and brain activity to unisensory components of these events presented later in time. Object recognition (either visual or auditory) is enhanced if the initial multisensory experience had been semantically congruent and can be impaired if this multisensory pairing was either semantically incongruent or entailed meaningless information in the task-irrelevant modality, when compared to objects encountered exclusively in a unisensory context. Processes active during encoding cannot straightforwardly explain these effects; performance on all initial presentations was indistinguishable despite leading to opposing effects with stimulus repetitions. Brain responses to unisensory stimulus repetitions differ during early processing stages (-100 ms post-stimulus onset) according to whether or not they had been initially paired in a multisensory context. Plus, the network exhibiting differential responses varies according to whether or not memory performance is enhanced or impaired. The collective findings we review indicate that multisensory associations formed via single-trial learning exert influences on later unisensory processing to promote distinct object representations that manifest as differentiable brain networks whose activity is correlated with memory performance. These influences occur incidentally, despite many intervening stimuli, and are distinguishable from the encoding/learning processes during the formation of the multisensory associations. The consequences of multisensory interactions that persist over time to impact memory retrieval and object discrimination.