105 resultados para CDF,spray,multicomponente,film,boiling,Delta,Leidenfrost
Resumo:
Cyclooxygenase-derived prostaglandin E(2) (PGE(2)) is the predominant prostanoid found in most colorectal cancers (CRC) and is known to promote colon carcinoma growth and invasion. However, the key downstream signaling pathways necessary for PGE(2)-induced intestinal carcinogenesis are unclear. Here we report that PGE(2) indirectly transactivates PPARdelta through PI3K/Akt signaling, which promotes cell survival and intestinal adenoma formation. We also found that PGE(2) treatment of Apc(min) mice dramatically increased intestinal adenoma burden, which was negated in Apc(min) mice lacking PPARdelta. We demonstrate that PPARdelta is a focal point of crosstalk between the prostaglandin and Wnt signaling pathways which results in a shift from cell death to cell survival, leading to increased tumor growth.
Resumo:
Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.
Resumo:
OBJECTIVE: Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) is the predominant PPAR subtype in cardiac cells and plays a prominent role in the regulation of cardiac lipid metabolism. However, the role of PPARbeta/delta activators in cardiac hypertrophy is not yet known. METHODS AND RESULTS: In cultured neonatal rat cardiomyocytes, the selective PPARbeta/delta activator L-165041 (10 micromol/L) inhibited phenylephrine (PE)-induced protein synthesis ([(3)H]leucine uptake), induction of the fetal-type gene atrial natriuretic factor (ANF) and cardiac myocyte size. Induction of cardiac hypertrophy by PE stimulation also led to a reduction in the transcript levels of both muscle-type carnitine palmitoyltransferase (50%, P<0.05) and pyruvatedehydrogenase kinase 4 (30%, P<0.05), and these changes were reversed in the presence of the PPARbeta/delta agonist L-165041. Stimulation of neonatal rat cardiomyocytes with PE and embryonic rat heart-derived H9c2 cells with lipopolysaccharide (LPS) enhanced the expression of the nuclear factor (NF)-kappaB-target gene monocyte chemoattractant protein 1 (MCP-1). The induction of MCP-1 was reduced in the presence of L-165041, suggesting that this compound prevented NF-kappaB activation. Electrophoretic mobility shift assay (EMSA) revealed that L-165041 significantly decreased LPS-stimulated NF-kappaB binding activity in H9c2 myotubes. Finally, coimmunoprecipitation studies showed that L-165041 strongly enhanced the physical interaction between PPARbeta/delta and the p65 subunit of NF-kappaB, suggesting that increased association between these two proteins is the mechanism responsible for antagonizing NF-kappaB activation by PPARbeta/delta activators. CONCLUSION: These results suggest that PPARbeta/delta activation inhibits PE-induced cardiac hypertrophy and LPS-induced NF-kappaB activation.
Resumo:
Delta 9-tetrahydrocannabinol (THC) has been proposed as therapeutic agent in the treatment of multiple sclerosis. In the present study, we examined whether a modulation of brain inflammatory by THC may protect against demyelination. Myelinating aggregating brain cell cultures were subjected to demyelination by a repeated treatment (3x) with the two inflammatory agents interferon-y (IFN-y) and lipopolysaccharide (LPS). The effects of THC on an acute inflammatory reponse were also examined by treating the aggregates with a single application of the two inflammatory agents. THC effects on the demyelinating process and on several mediators of the inflammatory reponse were analyzed. THC treatment partially prevented the decreased immunoreactivity for MBP, and the decrease in MBP content measured by immunoblotting. It prevented IFN-y + LPS -induced microglial reactivity; and decreased the IFN-y + LPS-induced i8ncreased phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation were downregulated by THC treatment following a single application of the inflammatory agents, but not after repeated applications. THC protected partially against the IFN-y + LPS-induced demyelination. The protective effect of THC on IFN-y + LPS-induced demyelination may be due to a decrease of the inflammatory reponse. However, the anti-inflammatory effect of THC on some inflammatory markers is lost when the inflammatory response is more proeminent and of longer duration, suggesting either that the anti-inflammatory effect of a molecule may depend on the properties of the inflammatory response, or that the anti-inflammatory potential of THC decreases in case of repeated exposure.
Resumo:
T cells belong to either the alpha beta+ or gamma delta+ lineage as defined by their antigen receptor. Although both T-cell subsets have been shown to be involved in the immune response to the parasite Leishmania major, very little is known about possible interactions between these two populations. In this study, using a mouse model of infection with L. major, we showed that expansion of a subset of gamma delta+ T cells in vivo is dependent upon the presence of alpha beta+ CD4+ T cells. Moreover, this effect appears to be mediated via the secretion of lymphokines by CD4+ cells with a T-helper 2 (Th2) functional phenotype. Results showing that activation of Th2-type cells in mice treated with anti-immunoglobulin D antibodies or infected with Nippostrongylus brasiliensis also results in gamma delta+ T-cell expansion suggest that this effect of the Th2-type CD4+ cells is a general phenomenon not restricted to infection with L. major.
Resumo:
Three standard radiation qualities (RQA 3, RQA 5 and RQA 9) and two screens, Kodak Lanex Regular and Insight Skeletal, were used to compare the imaging performance and dose requirements of the new Kodak Hyper Speed G and the current Kodak T-MAT G/RA medical x-ray films. The noise equivalent quanta (NEQ) and detective quantum efficiencies (DQE) of the four screen-film combinations were measured at three gross optical densities and compared with the characteristics for the Kodak CR 9000 system with GP (general purpose) and HR (high resolution) phosphor plates. The new Hyper Speed G film has double the intrinsic sensitivity of the T-MAT G/RA film and a higher contrast in the high optical density range for comparable exposure latitude. By providing both high sensitivity and high spatial resolution, the new film significantly improves the compromise between dose and image quality. As expected, the new film has a higher noise level and a lower signal-to-noise ratio than the standard film, although in the high frequency range this is compensated for by a better resolution, giving better DQE results--especially at high optical density. Both screen-film systems outperform the phosphor plates in terms of MTF and DQE for standard imaging conditions (Regular screen at RQA 5 and RQA 9 beam qualities). At low energy (RQA 3), the CR system has a comparable low-frequency DQE to screen-film systems when used with a fine screen at low and middle optical densities, and a superior low-frequency DQE at high optical density.
Resumo:
RATIONALE: Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. OBJECTIVE: To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. METHODS AND RESULTS: Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. CONCLUSIONS: Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.
Resumo:
Homozygous (delta ccr5/delta ccr5) and heterozygous (CCR5/delta ccr5) deletions in the beta-chemokine receptor 5 (CCR5) gene, which encodes for the major co-receptor for macrophage-tropic HIV-1 entry, have been implicated in resistance to HIV infection and in protection against disease progression, respectively. The CCR5/delta ccr5 genotype was found more frequently in long-term nonprogressors (LTNP) (31.0%) than in progressors (10.6%, p < 0.0001), in agreement with previous studies. Kaplan-Meier survival analyses showed that a slower progression of disease, i.e. higher proportion of subjects with CD4+ T cell counts > 500/microl (p = 0.0006) and a trend toward a slower progression to AIDS (p = 0.077), was associated with the CCR5/delta ccr5 genotype. However, when LTNP were analyzed separately, no significant differences in CD4+ T cell counts (p = 0.12) and viremia levels (p = 0.65) were observed between the wild-type (69% of LTNP) and the heterozygous (31.0%) genotypes. Therefore, there are other factors which play a major role in determining the status of nonprogression in the majority of LTNP. Furthermore, there was no evidence that the CCR5/delta ccr5 genotype was associated with different rates of disease progression in the group of progressors. Taken together, these results indicate that the CCR5/delta ccr5 genotype is neither essential nor sufficient for protection against the progression of HIV disease.