134 resultados para Biological analysis
Resumo:
To investigate their role in receptor coupling to G(q), we mutated all basic amino acids and some conserved hydrophobic residues of the cytosolic surface of the alpha(1b)-adrenergic receptor (AR). The wild type and mutated receptors were expressed in COS-7 cells and characterized for their ligand binding properties and ability to increase inositol phosphate accumulation. The experimental results have been interpreted in the context of both an ab initio model of the alpha(1b)-AR and of a new homology model built on the recently solved crystal structure of rhodopsin. Among the twenty-three basic amino acids mutated only mutations of three, Arg(254) and Lys(258) in the third intracellular loop and Lys(291) at the cytosolic extension of helix 6, markedly impaired the receptor-mediated inositol phosphate production. Additionally, mutations of two conserved hydrophobic residues, Val(147) and Leu(151) in the second intracellular loop had significant effects on receptor function. The functional analysis of the receptor mutants in conjunction with the predictions of molecular modeling supports the hypothesis that Arg(254), Lys(258), as well as Leu(151) are directly involved in receptor-G protein interaction and/or receptor-mediated activation of the G protein. In contrast, the residues belonging to the cytosolic extensions of helices 3 and 6 play a predominant role in the activation process of the alpha(1b)-AR. These findings contribute to the delineation of the molecular determinants of the alpha(1b)-AR/G(q) interface.
Resumo:
To study different temporal components on cancer mortality (age, period and cohort) methods of graphic representation were applied to Swiss mortality data from 1950 to 1984. Maps using continuous slopes ("contour maps") and based on eight tones of grey according to the absolute distribution of rates were used to represent the surfaces defined by the matrix of various age-specific rates. Further, progressively more complex regression surface equations were defined, on the basis of two independent variables (age/cohort) and a dependent one (each age-specific mortality rate). General patterns of trends in cancer mortality were thus identified, permitting definition of important cohort (e.g., upwards for lung and other tobacco-related neoplasms, or downwards for stomach) or period (e.g., downwards for intestines or thyroid cancers) effects, besides the major underlying age component. For most cancer sites, even the lower order (1st to 3rd) models utilised provided excellent fitting, allowing immediate identification of the residuals (e.g., high or low mortality points) as well as estimates of first-order interactions between the three factors, although the parameters of the main effects remained still undetermined. Thus, the method should be essentially used as summary guide to illustrate and understand the general patterns of age, period and cohort effects in (cancer) mortality, although they cannot conceptually solve the inherent problem of identifiability of the three components.
Resumo:
BACKGROUND: The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. RESULTS: We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. CONCLUSIONS: Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.
Resumo:
Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.
Resumo:
MHC-peptide multimers containing biotinylated MHC-peptide complexes bound to phycoerythrin (PE) streptavidin (SA) are widely used for analyzing and sorting antigen-specific T cells. Here we describe alternative T cell-staining reagents that are superior to conventional reagents. They are built on reversible chelate complexes of Ni(2+)-nitrilotriacetic acid (NTA) with oligohistidines. We synthesized biotinylated linear mono-, di-, and tetra-NTA compounds using conventional solid phase peptide chemistry and studied their interaction with HLA-A*0201-peptide complexes containing a His(6), His(12), or 2×His(6) tag by surface plasmon resonance on SA-coated sensor chips and equilibrium dialysis. The binding avidity increased in the order His(6) < His(12) < 2×His(6) and NTA(1) < NTA(2) < NTA(4), respectively, depending on the configuration of the NTA moieties and increased to picomolar K(D) for the combination of a 2×His(6) tag and a 2×Ni(2+)-NTA(2). We demonstrate that HLA-A2-2×His(6)-peptide multimers containing either Ni(2+)-NTA(4)-biotin and PE-SA- or PE-NTA(4)-stained influenza and Melan A-specific CD8+ T cells equal or better than conventional multimers. Although these complexes were highly stable, they very rapidly dissociated in the presence of imidazole, which allowed sorting of bona fide antigen-specific CD8+ T cells without inducing T cell death as well as assessment of HLA-A2-peptide monomer dissociation kinetics on CD8+ T cells.
Resumo:
Haemoglobin (Hb) and haematocrit (Hct) are measured as indirect markers of doping in athletes. We studied the effect of posture on these parameters in a typical antidoping setting. Venous blood samples were obtained from nine endurance athletes (six males, three females) and nine control subjects (six males, three females) immediately and after 5, 10, 15, 20 and 30 min after having adopted a seated position from normal daily activity. Hb (CV 0.72%) and Hct (CV 0.87%) were determined using an automated cell counter, plasma volume changes were calculated. Differences between the time points, gender and groups were calculated using a mixed-model procedure. Significant changes were observed in the first 10 min after sitting down but no further changes were noted between 10 and 30 min. Mean directional change for Hb and Hct between 0 min and the average of the period from 10 to 30 min was -2.4% (-0.35 g/dl) for Hb and -2.7% (-1.2%) for Hct. Plasma volume increased accordingly. Neither group nor gender had significant effects. Under typical conditions encountered during blood testing in doping control, a period of 10 min in a seated position is sufficient for the vascular volumes to re-equilibrate and to adapt to the new posture.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
The biological properties of wild-type A75/17 and cell culture-adapted Onderstepoort canine distemper virus differ markedly. To learn more about the molecular basis for these differences, we have isolated and sequenced the protein-coding regions of the attachment and fusion proteins of wild-type canine distemper virus strain A75/17. In the attachment protein, a total of 57 amino acid differences were observed between the Onderstepoort strain and strain A75/17, and these were distributed evenly over the entire protein. Interestingly, the attachment protein of strain A75/17 contained an extension of three amino acids at the C terminus. Expression studies showed that the attachment protein of strain A75/17 had a higher apparent molecular mass than the attachment protein of the Onderstepoort strain, in both the presence and absence of tunicamycin. In the fusion protein, 60 amino acid differences were observed between the two strains, of which 44 were clustered in the much smaller F2 portion of the molecule. Significantly, the AUG that has been proposed as a translation initiation codon in the Onderstepoort strain is an AUA codon in strain A75/17. Detailed mutation analyses showed that both the first and second AUGs of strain A75/17 are the major translation initiation sites of the fusion protein. Similar analyses demonstrated that, also in the Onderstepoort strain, the first two AUGs are the translation initiation codons which contribute most to the generation of precursor molecules yielding the mature form of the fusion protein.
Resumo:
PURPOSE: In contrast to other human tumors, a repression of the cell-surface glycoprotein CD44 on neuroblastoma is a marker of aggressiveness that usually correlates to N-myc amplification. We thus compared the prognostic value of both markers in the initial staging of 121 children treated for neuroblastoma in collaborative institutions. METHODS: Frozen samples were analyzed by a rapid and well-standardized technique of immunostaining with monoclonal antibodies (MoAbs) against epitopes in the CD44 constant region. RESULTS: In this retrospective series, CD44 was expressed on 102 specimens and strongly correlated with favorable tumor stages and histology, younger age, and normal N-myc copy numbers. In univariate analysis, CD44 expression and normal N-myc were the most powerful markers of favorable clinical outcome (P < 10(-6) and chi 2 = 65.40 and P < 10(-6) and chi 2 = 42.56, respectively), but analysis of CD44 affords significant prognostic discrimination in subgroups of patients with or without N-myc-amplified tumors. In the subgroup of stage IV neuroblastomas, CD44 was the only significant prognostic marker (P < .02, chi 2 = 5.76), whereas N-myc status was not discriminant. In multivariate analysis of five factors, ie, N-myc amplification, CD44 expression, age, tumor stage, and histology, the only independent prognostic factors of event-free survival were CD44 expression and tumor stage. CONCLUSION: The analysis of CD44 cell-surface expression must be recommended as an additional biologic marker in the initial staging of the disease.
Resumo:
Highly quantitative biomarkers of neurodegenerative disease remain an important need in the urgent quest for disease-modifying therapies. For Huntington's disease (HD), a genetic test is available (trait marker), but necessary state markers are still in development. In this report, we describe a large battery of transcriptomic tests explored as state biomarker candidates. In an attempt to exploit the known neuroinflammatory and transcriptional perturbations of disease, we measured relevant mRNAs in peripheral blood cells. The performance of these potential markers was weak overall, with only one mRNA, immediate early response 3 (IER3), showing a modest but significant increase of 32% in HD samples compared with controls. No statistically significant differences were found for any other mRNAs tested, including a panel of 12 RNA biomarkers identified in a previous report [Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, et al. (2005) Proc Natl Acad Sci USA 102:11023-11028]. The present results may nonetheless inform the future design and testing of HD biomarker strategies.
Resumo:
Peripheral T-cell lymphoma (PTCL) encompasses a heterogeneous group of neoplasms with generally poor clinical outcome. Currently 50% of PTCL cases are not classifiable: PTCL-not otherwise specified (NOS). Gene-expression profiles on 372 PTCL cases were analyzed and robust molecular classifiers and oncogenic pathways that reflect the pathobiology of tumor cells and their microenvironment were identified for major PTCL-entities, including 114 angioimmunoblastic T-cell lymphoma (AITL), 31 anaplastic lymphoma kinase (ALK)-positive and 48 ALK-negative anaplastic large cell lymphoma, 14 adult T-cell leukemia/lymphoma and 44 extranodal NK/T-cell lymphoma that were further separated into NK-cell and gdT-cell lymphomas. Thirty-seven percent of morphologically diagnosed PTCL-NOS cases were reclassified into other specific subtypes by molecular signatures. Reexamination, immunohistochemistry, and IDH2 mutation analysis in reclassified cases supported the validity of the reclassification. Two major molecular subgroups can be identified in the remaining PTCL-NOS cases characterized by high expression of either GATA3 (33%; 40/121) or TBX21 (49%; 59/121). The GATA3 subgroup was significantly associated with poor overall survival (P = .01). High expression of cytotoxic gene-signature within the TBX21 subgroup also showed poor clinical outcome (P = .05). In AITL, high expression of several signatures associated with the tumor microenvironment was significantly associated with outcome. A combined prognostic score was predictive of survival in an independent cohort (P = .004).
Resumo:
Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3 x 10(-37) is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21)), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4)). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.
Resumo:
Biological markers for the status of vitamins B12 and D: the importance of some analytical aspects in relation to clinical interpretation of results When vitamin B12 deficiency is expressed clinically, the diagnostic performance of total cobalamin is identical to that of holotranscobalamin II. In subclinical B12 deficiency, the two aforementioned markers perform less well. Additional analysis of a second, functional marker (methylmalonate or homocysteine) is recommended. Different analytical approaches for 25-hydroxyvitamin D quantification, the marker of vitamin D deficiency, are not yet standardized. Measurement biases of up to +/- 20% compared with the original method used to establish threshold values are still observed.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.