107 resultados para Autopilot Flight Architecture
Resumo:
In ants, energy for flying is derived from carbohydrates (glycogen and free sugars). The amount of these substrates was compared in sexuals participating or not participating in mating flights. Results show that in participating females (Lasius niger, L. flavus, Myrmica scabrinodis, Formica rufa, F. polyctena, F. lugubris), the amount of carbohydrates, especially glycogen, was higher than in non-participating females (Cataglyphis cursor, Iridomyrmex humilis). Similarly, male C. cursor and I. humilis which fly, exhibit a much higher carbohydrate content than do the non-flying females of these species. Furthermore, the quantity of carbohydrates stored was generally higher in males than in females for each species. These results are discussed with regard to the loss of the nuptial flight by some species of ants.
Resumo:
Abstract Human experience takes place in the line of mental time (MT) created through 'self-projection' of oneself to different time-points in the past or future. Here we manipulated self-projection in MT not only with respect to one's life events but also with respect to one's faces from different past and future time-points. Behavioural and event-related functional magnetic resonance imaging activity showed three independent effects characterized by (i) similarity between past recollection and future imagination, (ii) facilitation of judgements related to the future as compared with the past, and (iii) facilitation of judgements related to time-points distant from the present. These effects were found with respect to faces and events, and also suggest that brain mechanisms of MT are independent of whether actual life episodes have to be re-experienced or pre-experienced, recruiting a common cerebral network including the anteromedial temporal, posterior parietal, inferior frontal, temporo-parietal and insular cortices. These behavioural and neural data suggest that self-projection in time is a fundamental aspect of MT, relying on neural structures encoding memory, mental imagery and self.
Resumo:
PURPOSE: To prospectively compare various parameters of vessels imaged at 3 T by using time-of-flight (TOF) and T2-prepared magnetic resonance (MR) angiography in a rabbit model of hind limb ischemia. MATERIALS AND METHODS: Experiments were approved by the institutional animal care and use committee. Endovascular occlusion of the left superficial femoral artery was induced in 14 New Zealand white rabbits. After 2 weeks, MR angiography and conventional (x-ray) angiography were performed. Vessel sharpness was evaluated visually in the ischemic and nonischemic limbs, and the presence of small collateral vessels was evaluated in the ischemic limbs. Vessel sharpness was also quantified by evaluating the magnitude of signal intensity change at the vessel borders. RESULTS: The sharpness of vessels in the nonischemic limbs was similar between the TOF and the T2-prepared images. In the ischemic limbs, however, T2-prepared imaging, as compared with TOF imaging, generated higher vessel sharpness in arteries with diminished blood flow (mean vessel sharpness: 44% vs 30% for popliteal arteries, 45% vs 28% for saphenous arteries; P < .001 for both comparisons) and enabled better detection of small collateral vessels (93% vs 36% of vessels, P < .001). CONCLUSION: T2-prepared imaging can facilitate high-spatial-resolution MR angiography of small vessels with low blood flow and thus has potential as a tool for noninvasive evaluation of arteriogenic therapies, without use of contrast material. Supplemental material: http://radiology.rsnajnls.org/cgi/content/full/2452062067/DC1.
Resumo:
Access to new biological sources is a key element of natural product research. A particularly large number of biologically active molecules have been found to originate from microorganisms. Very recently, the use of fungal co-culture to activate the silent genes involved in metabolite biosynthesis was found to be a successful method for the induction of new compounds. However, the detection and identification of the induced metabolites in the confrontation zone where fungi interact remain very challenging. To tackle this issue, a high-throughput UHPLC-TOF-MS-based metabolomic approach has been developed for the screening of fungal co-cultures in solid media at the petri dish level. The metabolites that were overexpressed because of fungal interactions were highlighted by comparing the LC-MS data obtained from the co-cultures and their corresponding mono-cultures. This comparison was achieved by subjecting automatically generated peak lists to statistical treatments. This strategy has been applied to more than 600 co-culture experiments that mainly involved fungal strains from the Fusarium genera, although experiments were also completed with a selection of several other filamentous fungi. This strategy was found to provide satisfactory repeatability and was used to detect the biomarkers of fungal induction in a large panel of filamentous fungi. This study demonstrates that co-culture results in consistent induction of potentially new metabolites.
Resumo:
The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the detection window was short after oral TU ingestion. The detection ability of the 12 targeted steroids was thus evaluated by using individual thresholds following both transdermal and oral administration. Other relevant biomarkers and minor metabolites were studied for complementary information to the steroid profile, including sulfoconjugated analytes and hydroxy forms of glucuroconjugated metabolites. While sulfoconjugated steroids may provide helpful screening information for individuals with homozygotous UGT2B17 deletion, hydroxy-glucuroconjugated analytes could enhance the detection window of oral T undecanoate (TU) doping.
Resumo:
Osteoporosis (OP) is a systemic skeletal disease characterized by a low bone mineral density (BMD) and a micro-architectural (MA) deterioration. Clinical risk factors (CRF) are often used as a MA approximation. MA is yet evaluable in daily practice by the trabecular bone score (TBS) measure. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis values, partially independent of CRF and BMD. The aim of the OsteoLaus cohort is to combine in daily practice the CRF and the information given by DXA (BMD, TBS and vertebral fracture assessment (VFA)) to better identify women at high fracture risk. The OsteoLaus cohort (1400 women 50 to 80 years living in Lausanne, Switzerland) started in 2010. This study is derived from the cohort COLAUS who started in Lausanne in 2003. The main goal of COLAUS is to obtain information on the epidemiology and genetic determinants of cardiovascular risk in 6700 men and women. CRF for OP, bone ultrasound of the heel, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded in OsteoLaus. Preliminary results are reported. We included 631 women: mean age 67.4 ± 6.7 years, BMI 26.1 ± 4.6, mean lumbar spine BMD 0.943 ± 0.168 (T-score − 1.4 SD), and TBS 1.271 ± 0.103. As expected, correlation between BMD and site matched TBS is low (r2 = 0.16). Prevalence of VFx grade 2/3, major OP Fx and all OP Fx is 8.4%, 17.0% and 26.0% respectively. Age- and BMI-adjusted ORs (per SD decrease) are 1.8 (1.2-2.5), 1.6 (1.2-2.1), and 1.3 (1.1-1.6) for BMD for the different categories of fractures and 2.0 (1.4-3.0), 1.9 (1.4-2.5), and 1.4 (1.1-1.7) for TBS respectively. Only 32 to 37% of women with OP Fx have a BMD < − 2.5 SD or a TBS < 1.200. If we combine a BMD < − 2.5 SD or a TBS < 1.200, 54 to 60% of women with an osteoporotic Fx are identified. As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS subsequent to BMD increases significantly the identification of women with prevalent OP Fx which would have been misclassified by BMD alone. For the first time we are able to have complementary information about fracture (VFA), density (BMD), micro- and macro architecture (TBS and HAS) from a simple, low ionizing radiation and cheap device: DXA. Such complementary information is very useful for the patient in the daily practice and moreover will likely have an impact on cost effectiveness analysis.
Resumo:
Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21-specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.
Beyond EA Frameworks: Towards an Understanding of the Adoption of Enterprise Architecture Management
Resumo:
Enterprise architectures (EA) are considered promising approaches to reduce the complexities of growing information technology (IT) environments while keeping pace with an ever-changing business environment. However, the implementation of enterprise architecture management (EAM) has proven difficult in practice. Many EAM initiatives face severe challenges, as demonstrated by the low usage level of enterprise architecture documentation and enterprise architects' lack of authority regarding enforcing EAM standards and principles. These challenges motivate our research. Based on three field studies, we first analyze EAM implementation issues that arise when EAM is started as a dedicated and isolated initiative. Following a design-oriented paradigm, we then suggest a design theory for architecture-driven IT management (ADRIMA) that may guide organizations to successfully implement EAM. This theory summarizes prescriptive knowledge related to embedding EAM practices, artefacts and roles in the existing IT management processes and organization.
Resumo:
Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.
Resumo:
Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
Resumo:
Introduction: « Osteo-Mobile Vaud » is a mobile osteoporosis (OP) screening program. The women > 60 years living in the region Vaud will be offered OP screening with new equipment installed in a bus. The main goal is to evaluate the fracture risk with the combination of clinical risk factors (CRF) and informations extracted by a single DXA: bone mineral density (BMD), vertebral fracture assessment (VFA), and micro-architecture (MA) evaluation. MA is yet evaluable in daily practice by the Trabecular Bone Score (TBS) measure. TBS is a novel grey-level texture measurement reflecting bone MA based on the use of experimental variograms of 2D projection images. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis value, partially independent of CRF and BMD. A 55-years follow- up is planned. Method: The Osteo-Mobile Vaud cohort (1500 women, > 60 years, living in the region Vaud) started in July 2010. CRF for OP, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded. Preliminary results are reported. Results: In July 31th, we evaluated 510 women: mean age 67 years, BMI 26 kg/m². 72 women had one or more fragility fractures, 39 had vertebral fracture (VFx) grade 2/3. TBS decreases with age (-0.005 / year, p<0.001), and with BMI (-0.011 per kg/m², p<0.001). Correlation between BMD and site matched TBS is low (r=0.4, p<0.001). For the lowest T-score BMD, odds ratio (OR, 95% CI) for VFx grade 2/3 and clinical OP Fx are 1.8 (1.1-2.9) and 2.3 (1.5-3.4). For TBS, age-, BMI- and BMD adjusted ORs (per SD decrease) for VFx grade 2/3 and clinical OP Fx are 1.9 (1.2-3.0) and 1.8 (1.2-2.7). The TBS added value was independent of lumbar spine BMD or the lowest T-score (femoral neck, total hip or lumbar spine). Conclusion: As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS and BMD may increase significantly the identification of women with prevalent OP Fx. For the first time we are able to have complementary information about fracture (VFA), density (BMD), and micro-architecture (TBS) from a simple, low ionizing radiation and cheap device: DXA. The value of such informations in a screening program will be evaluated.