266 resultados para Antifungal Peptide
Resumo:
Abstract In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used as a rapid method to identify yeasts isolated from patients in Tunisian hospitals. When identification could not be exstablished with this procedure, sequencing of the internal transcribed spacer with 5.8S ribosomal DNA (rDNA) (ITS1-5.8S-ITS2) and D1/D2 domain of large-subunit (LSU rDNA) were employed as a molecular approach for species differentiation. Candida albicans was the dominant species (43.37% of all cases), followed by C. glabrata (16.55%), C. parapsilosis (13.23%), C. tropicalis (11.34%), C. dubliniensis (4.96%), and other species more rarely encountered in human diseases such as C. krusei, C. metapsilosis, C. lusitaniae, C. kefyr, C. palmioleophila, C. guilliermondii, C. intermedia, C. orthopsilosis, and C. utilis. In addition, other yeast species were obtained including Saccharomyces cerevisiae, Debaryomyces hansenii (anamorph known as C. famata), Hanseniaspora opuntiae, Kodamaea ohmeri, Pichia caribbica (anamorph known as C. fermentati), Trichosporon spp. and finally a novel yeast species, C. tunisiensis. The in vitro antifungal activities of fluconazole and voriconazole were determined by the agar disk diffusion test and Etest, while the susceptibility to additional antifungal agents was determined with the Sensititre YeastOne system. Our results showed low incidence of azole resistance in C. albicans (0.54%), C. tropicalis (2.08%) and C. glabrata (4.28%). In addition, caspofungin was active against most isolates of the collection with the exception of two K. ohmeri isolates. This is the first report to describe caspofungin resistant isolates of this yeast.
Resumo:
A synthetic human atrial natriuretic peptide of 26 aminoacids [human (3-28)ANP or hANP] was infused into normal male volunteers. Six subjects were infused for 4 h at 1-wk intervals with either hANP at the rate of 0.5 or 1.0 microgram/min or its vehicle in a single-blind randomized order. Human (3-28)ANP at the dose of 0.5 microgram/min raised immunoreactive plasma ANP levels from 104 +/- 17 to 221 +/- 24 pg/ml (mean +/- SEM), but it induced no significant change in blood pressure, heart rate, effective renal plasma flow, glomerular filtration rate, or renal electrolyte excretion. At the rate of 1.0 microgram/min, human (3-28)ANP increased immunoreactive plasma ANP levels from 89 +/- 12 to 454 +/- 30 pg/ml. It reduced effective renal plasma flow from 523 +/- 40 to 453 +/- 38 ml/min (P less than 0.05 vs. vehicle), but left glomerular filtration rate unchanged. Natriuresis rose from 207 +/- 52 to 501 +/- 69 mumol/min (P less than 0.05 vs. vehicle) and urinary magnesium excretion from 3.6 +/- 0.5 to 5.6 +/- 0.5 mumol/min (P less than 0.01 vs. vehicle). The excretion rate of the other electrolytes, blood pressure, and heart rate were not significantly modified. At both doses, human (3-28)ANP tended to suppress the activity of the renin-angiotensin-aldosterone system. In 3 additional volunteers, the skin blood flow response to human (3-28)ANP, infused for 4 h at the rate of 1.0 microgram/min, was studied by means of a laser-doppler flowmeter. The skin blood flow rose during the first 2 h of peptide administration, then fell progressively to values below baseline. After the infusion was discontinued, it remained depressed for more than 2 h. Thus, in normal volunteers, human (3-28)ANP at the dose of 1.0 microgram/min produced results similar to those obtained previously with rat (3-28)ANP. It enhanced natriuresis without changing the glomerular filtration rate while effective renal plasma flow fell. It also induced a transient vasodilation of the skin vascular bed.
Resumo:
BACKGROUND: Allogeneic bone marrow donors can be incompatible at different levels. Even HLA-identical pairs will be still incompatible for numerous minor histocompatibility antigens (mHag). Nevertheless, some incompatibilities are found to be associated with an increased risk of graft-versus-host disease (GVHD), which could be related to the way the immune system recognizes these antigens. METHODS: We determined the specificity of cytotoxic T-cell clones isolated during acute GVHD or during bone marrow graft rejection in patients (n=14) transplanted with marrow from donors who were histoincompatible for different minor and/or major histocompatibility antigens. RESULTS: We found a clear hierarchy among the different types of histoincompatibilities. In three combinations mismatched for a class I allele, all 27 clones isolated during GVHD were specific for the incompatible HLA molecule. In the 11 class I-identical combinations, 14 different mHags were recognized. The mHag HA-1, known to have a significant impact on the development of GVHD, was recognized in the two HA-1-incompatible combinations. In one of these combinations, which was sex mismatched, all 56 clones analyzed were directed against HA-1, demonstrating the dominance of this mHag. In the four HA-1-compatible, sex-mismatched combinations, the anti-H-Y response was directed against one immunodominant epitope rather than against multiple Y-chromosome-encoded epitopes. All male specific cytotoxic T lymphocytes (n=15) recognized the same high-performance liquid chromatography-purified peptide fraction presented by T2 cells. Moreover, all cytotoxic T lymphocytes tested (n=6) were specific for the SMCY-derived peptide FIDSYICQV, originally described as being the H-Y epitope recognized in the context of HLA-A*0201. CONCLUSIONS: Some histocompatibility antigens are recognized in an immunodominant fashion and will therefore be recognized in the majority of mismatched combinations. Only for such antigens, correlations between mismatches and the occurrence of GVHD or graft rejections will be found.
Resumo:
The goal of adoptive T cell therapy in cancer is to provide effective antitumor immunity by transfer of selected populations of tumor Ag-specific T cells. Transfer of T cells with high TCR avidity is critical for in vivo efficacy. In this study, we demonstrate that fluorescent peptide/MHC class I multimeric complexes incorporating mutations in the alpha3 domain (D227K/T228A) that abrogate binding to the CD8 coreceptor can be used to selectively isolate tumor Ag-specific T cells of high functional avidity from both in vitro expanded and ex vivo T cell populations. Sorting, cloning, and expansion of alpha3 domain mutant multimer-positive CD8 T cells enabled rapid selection of high avidity tumor-reactive T cell clones. Our results are relevant for ex vivo identification and isolation of T cells with potent antitumor activity for adoptive T cell therapy.
Resumo:
The human MAGE3 gene is expressed in a significant proportion of tumors of various histological types, but is silent in normal adult tissues other than testis and placenta. Antigens encoded by MAGE3 may therefore be useful targets for specific antitumor immunization. Two antigenic peptides encoded by the MAGE3 gene have been reported previously. One is presented to cytolytic T lymphocytes (CTL) by HLA-A1, the other by HLA-A2 molecules. Here we show that MAGE3 also codes for a peptide that is presented to CTL by HLA-B44. MAGE3 peptides containing the HLA-B44 peptide binding motif were synthesized. Peptide MEVDPIGHLY, which showed the strongest binding to HLA-B44, was used to stimulate blood T lymphocytes from normal HLA-B44 donors. CTL clones were obtained that recognized not only HLA-B44 cells sensitized with the peptide, but also HLA-B44 tumor cell lines expressing MAGE3. The proportion of metastatic melanomas expressing the MAGE3/HLA-B44 antigen should amount to approximately 17% in the Caucasian population, since 24% of individuals carry the HLA-B44 allele and 76% of these tumors express MAGE3.
Resumo:
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.
Resumo:
We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.
Resumo:
Telomerase is a ribonucleoprotein complex responsible for the maintenance of the length of the telomeres during cell division, which is active in germ-line cells as well as in the vast majority of tumors but not in most normal tissues. The wide expression of the human telomerase catalytic subunit (hTERT) in tumors makes it an interesting candidate vaccine for cancer. hTERT-derived peptide 540-548 (hTERT(540)) has been recently shown to be recognized in an HLA-A*0201-restricted fashion by T cell lines derived from peptide-stimulated peripheral blood mononuclear cells (PBMC) from healthy donors. As a first step to the inclusion of this peptide in immunotherapy clinical trials, it is crucial to assess hTERT(540)-specific T cell reactivity in cancer patients as well as the ability of hTERT-specific CD8(+) T lymphocytes to recognize and lyse hTERT-expressing target cells. Here, we have analyzed the CD8(+) T cell response to peptide hTERT(540) in HLA-A*0201 melanoma patients by using fluorescent HLA-A*0201/hTERT(540) peptide tetramers. HLA-A*0201/hTERT(540) tetramer(+) CD8(+) T cells were readily detected in peptide-stimulated PBMC from a significant proportion of patients and could be isolated by tetramer-guided cell sorting. hTERT(540)-specific CD8(+) T cells were able to specifically recognize HLA-A*0201 cells either pulsed with peptide or transiently transfected with a minigene encoding the minimal epitope. In contrast, they failed to recognize hTERT-expressing HLA-A*0201(+) target cells. Furthermore, in vitro proteasome digestion studies revealed inadequate hTERT processing. Altogether, these results raise questions on the use of hTERT(540) peptide for cancer immunotherapy.
Resumo:
A recombinant baculovirus expressing the murine class I MHC heavy chain H-2Kd cDNA under the transcriptional control of Autografa californica nuclear polyhedrosis virus (AcNPV) polyhedrin promoter has been isolated and used to infect Sf9 lepidopteran cells either alone or in association with a previously isolated virus expressing mouse beta 2-microglobulina (beta 2-ma). When infected with the heavy chain-encoding virus alone, H-2Kd was produced in a beta 2-m-free conformation detected on the surface of infected cells by conformation-independent antibodies. When Sf9 cells were co-infected with both viruses, approximately 10% of the heavy chain pool was engaged in the formation of native heterodimeric MHC class I molecules, which were glycosylated and transported to the cell surface as demonstrated by radio-binding experiments and flow cytometry. The assembly of the recombinant class I molecule was dependent on peptide, since heterodimer formation was brought about by H-2Kd-specific peptide ligands both in vivo, upon incubation with dually infected cells, and in vitro, in cell-free detergent extracts. In addition, a change in heavy chain conformation was brought about upon incubation with high concentrations (100 microM) of an H-2Kd-restricted octapeptide epitope from Plasmodium berghei. Furthermore, using low concentrations (3 nM) of a photoaffinity label derivative of this peptide, we show direct binding to cells co-expressing class I heavy chain and mouse beta 2-m but not to cells expressing free heavy chain only.
Resumo:
Using a direct binding assay based on photoaffinity labeling, we studied the interaction of T cell receptor (TCR) with a Kd-bound photoreactive peptide derivative on living cells. The Kd-restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) was reacted NH2-terminally with biotin and at the TCR contact residue Lys259 with photoreactive iodo, 4-azido salicylic acid (IASA) to make biotin-YIPSAEK(IASA)I. Cytotoxic T lymphocyte (CTL) clones derived from mice immunized with this derivative recognized this conjugate, but not a related one lacking the IASA group nor the parental PbCS peptide. The clones were Kd restricted. Recognition experiments with variant conjugates, lacking substituents from IASA, revealed a diverse fine specificity pattern and indicated that this group interacted directly with the TCR. The TCR of four clones could be photoaffinity labeled by biotin-YIPSAEK(125IASA)I. This labeling was dependent on the conjugates binding to the Kd molecule and was selective for the TCR alpha (2 clones) or beta chain (1 clone), or was common for both chains (1 clone). TCR sequence analysis showed a preferential usage of J alpha TA28 containing alpha chains that were paired with V beta 1 expressing beta chains. The TCR that were photoaffinity labeled at the alpha chain expressed these J alpha and V beta segments. The tryptophan encoded by the J alpha TA28 segment is rarely found in other J alpha segments. Moreover, we show that the IASA group interacts preferentially with tryptophan in aqueous solution. We thus propose that for these CTL clones, labeling of the alpha chain occurs via the J alpha-encoded tryptophan residue.
Resumo:
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Resumo:
A pool of oligonucleotides encoding a start methionine and nine random amino acids was inserted at the 5'-end of the gene for the yeast cytochrome oxidase subunit IV lacking its own mitochondrial targeting sequence. Approximately one-quarter of the randomly generated sequences targeted subunit IV to its correct intramitochondrial location in vivo. Sequence analysis of 89 randomly generated sequences showed that their efficiencies as mitochondrial targeting signals correlated with the potential to fold into an amphiphilic alpha-helix. Functional targeting sequences were enriched in arginine and isoleucine residues but contained few aspartate, glutamate, and proline residues. Nonfunctional sequences predicted to have significant helical amphiphilicity often had at least one acidic or multiple helix-breaking residues that would be expected to interfere with targeting functioning. These results support the hypothesis that the signal for targeting a protein into the mitochondrial matrix is usually a positively charged amphiphilic helix.
Resumo:
ABSTRACT Upregulation of the Major Facilitator transporter gene MDR1 (Multi_drug Resistance 1) is one of the mechanisms observed in Candida albicans clinical isolates developing resistance to azole antifungal agents. To better understand this phenomenon, the cis-acting regulatory elements present in a modulatable reporter system under the control of the MDR1 promoter were characterized. In an azole-susceptible strain, transcription of this reporter is transiently upregulated in response to either benomyl or H2O2, whereas its expression is constitutively high in an azole-resistant strain (FR2). Two cis-acting regulatory elements, that are necessary and sufficient to convey the same transcriptional responses to a heterologous promoter (CDR2), were identified within the MDR1promoter. The first element, called BRE (for Benomyl Response Element, -296 to -260 with respect to the ATG start codon), is required for benomyl-dependent MDR1 upregulation and for constitutive high expression of MDR1 in FR2. The second element, termed HRE (for H2O2 Response Element, -561 to -520), is required for H2O2-dependent MDR1 upregulation, but is dispensable for constitutive high expression. Two potential binding sites (TTAG/CTAA) for the blip transcription factor Cap1p lie within the HRE. Moreover, inactivation of CAP1 abolished the transient response to H2O2 and diminished significantly the transient response to benomyl. Cap1p, which has been previously implicated in cellular responses to oxidative stress, may thus play a transacting and positive regulatory role in benomyl- and H2O2-dependent transcription of MDR1. However, it is not the only transcription factor involved in the response of MDR1 to benomyl. A minimal BRE element (-290 to -273) that is sufficient to detect in vitro sequence-specific binding of protein complexes in crude extracts prepared from C. albicans was also delimited. Genome-wide transcript profiling analyses undertaken with a matched pair of clinical isolates, one of which being azole-resistant and upregulating MDR1, and with an azole-susceptible strain exposed to benomyl, revealed that genes specifically upregulated by benomyl harbour in their promoters Cap1p binding site(s). This strengthened the idea that Cap1p plays a role in benomyl-dependent upregulation of MDR1. BRE-like sequences were also identified in several genes co-regulated with MDR1 in both conditions, which was consistent with the involvement of the BRE in both processes. A set of 147 mutants lacking a single transcription factor gene was next screened for loss of MDR1response to benomyl. Unfortunately, none of the tested mutants showed a loss of benomyl-dependent MDR1 upregulation. Nevertheless, a significant diminution of the response was observed in the mutants in which the MADS-box transcription factor Mcm1p and the C2H2 zinc finger transcription factor orf19.13374p were inactivated, suggesting that Mcm1p and orf19.13374p are involved in MDR1response to benomyl. Interestingly, the BRE contains a perfect match to the binding consensus of Mcm1p, raising the possibility that MDR1may be a direct target of this transcriptional activator. In conclusion, while the identity of the trans-acting factors that bind to the BRE and HRE remains to be confirmed, the tools we have developed during characterization of the cis-acting elements of the MDR1promoter should now serve to elucidate the nature of the components that modulate its activity. RESUME La surexpression du gène MDR1 (pour Résistance Multidrogue 1), qui code pour un transporteur de la famille des Major Facilitators, est l'un des mécanismes observés dans les isolats cliniques de la levure Candida albicans développant une résistance aux agents antifongiques appelés azoles. Pour mieux comprendre ce phénomène, les éléments de régulation agissant en cis dans un système rapporteur modulable sous le contrôle du promoteur MDR1 ont été caractérisés. Dans une souche sensible aux azoles, la transcription de ce rapporteur est transitoirement surélevée en réponse soit au bénomyl soit à l'agent oxydant H2O2, alors que son expression est constitutivement élevée dans une souche résistante aux azoles (souche FR2). Deux éléments de régulation agissant en cis, nécessaires et suffisants pour transmettre les mêmes réponses transcriptionnelles à un promoteur hétérologue (CDR2), ont été identifiés dans le promoteur MDR1. Le premier élément, appelé BRE (pour Elément de Réponse au Bénomyl, de -296 à -260 par rapport au codon d'initiation ATG) est requis pour la surexpression de MDR1dépendante du bénomyl et pour l'expression constitutive de MDR1 dans FR2. Le deuxième élément, appelé HRE (pour Elément de Réponse à l'H2O2, de -561 à -520), est requis pour la surexpression de MDR1 dépendante de l'H2O2, mais n'est pas impliqué dans l'expression constitutive du gène MDR1. Deux sites de fixation potentiels (TTAG/CTAA) pour le facteur de transcription Cap1p ont été identifiés dans l'élément HRE. De plus, l'inactivation de CAP1 abolit la réponse transitoire à l'H2O2 et diminua significativement la réponse transitoire au bénomyl. Cap1p, qui est impliqué dans les réponses de la cellule au stress oxydatif, doit donc jouer un rôle positif en trans dans la surexpression de MDR1 dépendante du bénomyl et de l'H2O2. Cependant, ce n'est pas le seul facteur de transcription impliqué dans la réponse au bénomyl. Un élément BRE d'une longueur minimale (de -290 à -273) a également été défini et est suffisant pour détecter une interaction spécifique in vitro avec des protéines provenant d'extraits bruts de C. albicans. L'analyse du profil de transcription d'une paire d'isolats cliniques comprenant une souche résistante aux azoles surexprimant MDR1, et d'une souche sensible aux azoles exposée au bénomyl, a révélé que les gènes spécifiquement surexprimés par le bénomyl contiennent dans leurs promoteurs un ou plusieurs sites de fixation pour Cap1p. Ceci renforce l'idée que Cap1p joue un rôle dans la surexpression de MDR1dépendante du bénomyl. Une ou deux séquences ressemblant à l'élément BRE ont également été identifiées dans la plupart des gènes corégulés avec MDR1 dans ces deux conditions, ce qui était attendu compte-tenu du rôle joué par cet élément dans les deux processus. Une collection de 147 mutants dans lesquels un seul facteur de transcription est inactivé a été testée pour la perte de réponse au bénomyl de MDR1. Malheureusement, la surexpression de MDR1 dépendante du bénomyl n'a été perdue dans aucun des mutants testés. Néanmoins, une diminution significative de la réponse a été observée chez des mutants dans lesquels le facteur de transcription à MADS-box Mcm1p et le facteur de transcription à doigts de zinc de type C2H2 orf19.13374p ont été inactivés, suggérant que Mcm1p et orf19.13374p sont impliqués dans la réponse de MDR1au bénomyl. Il est intéressant de noter que la BRE contient une séquence qui s'aligne parfaitement avec la séquence consensus du site de fixation de Mcm1p, ce qui soulève la possibilité que MDR1 pourrait être une cible directe de cet activateur transcriptionnel. En conclusion, alors que l'identité des facteurs agissant en trans en se fixant à la BRE et à la HRE reste à être confirmée, les outils que nous avons développés au cours de la caractérisation des éléments agissant en cis sur le promoteur MDR1 peut maintenant servir à élucider la nature des composants modulant son activité.
Resumo:
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.