152 resultados para Aminobutyric-acid Transporters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gout is the most common form of inflammatory arthritis in the elderly. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into the transporters that handle uric acid in the kidney as well as possible links between these transporters, hyperuricemia, and hypertension. The treatment of established hyperuricemia has also seen new developments. Febuxostat and PEG-uricase are two novel treatments that have been evaluated and shown to be highly effective in the management of hyperuricemia, thus enlarging the therapeutic options available to lower uric acid levels. Monosodium urate (MSU) crystals are potent inducers of inflammation. Within the joint, they trigger a local inflammatory reaction, neutrophil recruitment, and the production of pro-inflammatory cytokines as well as other inflammatory mediators. Experimentally, the uptake of MSU crystals by monocytes involves interactions with components of the innate immune system, namely Toll-like receptor (TLR)-2, TLR-4, and CD14. Intracellularly, MSU crystals activate multiple processes that lead to the formation of the NALP-3 (NACHT, LRR, and pyrin domain-containing-3) inflammasome complex that in turn processes pro-interleukin (IL)-1 to yield mature IL-1 beta, which is then secreted. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances in the understanding of hyperuricemia and gout provide new therapeutic targets for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Objectives: This review will briefly present the epidemiology and risk factors of gout, with a focus on recent advances. Methods: Key papers for inclusion were identified by a PubMed search, and articles were selected according to their relevance for the topic, according to authors' judgment. Results and conclusions: Gout therapy has remained very much unchanged for the last 50 years, but recently we have seen the approval of another gout treatment: the xanthine oxidase inhibitor febuxostat, and several new drugs are now in the late stages of clinical testing. Together with our enhanced level of understanding of the pathophysiology of the inflammatory process involved, we are entering a new era for the treatment of gout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proteasome plays a crucial role in the proteolytic processing of antigens presented to T cells in the context of major histocompatibility complex class I molecules. However, the rules governing the specificity of cleavage sites are still largely unknown. We have previously shown that a cytolytic T lymphocyte-defined antigenic peptide derived from the MAGE-3 tumor-associated antigen (MAGE-3(271-279), FLWGPRALV in one-letter code) is not presented at the surface of melanoma cell lines expressing the MAGE-3 protein. By using purified proteasome and MAGE-3(271-279) peptides extended at the C terminus by 6 amino acids, we identified predominant cleavages after residues 278 and 280 but no detectable cleavage after residue Val(279), the C terminus of the antigenic peptide. In the present study, we have investigated the influence of Pro(275), Leu(278), and Glu(280) on the proteasomal digestion of MAGE-3(271-285) substituted at these positions. We show that positions 278 and 280 are major proteasomal cleavage sites because they tolerate most amino acid substitutions. In contrast, the peptide bond after Val(279) is a minor cleavage site, influenced by both distal and proximal amino acid residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyochelin (Pch) and enantiopyochelin (EPch) are enantiomeric siderophores, with three chiral centers, produced under iron limitation conditions by Pseudomonas aeruginosa and Pseudomonas fluorescens , respectively. After iron chelation in the extracellular medium, Pch-Fe and EPch-Fe are recognized and transported by their specific outer-membrane transporters: FptA in P. aeruginosa and FetA in P. fluorescens . Structural analysis of FetA-EPch-Fe and FptA-Pch-Fe, combined with mutagenesis and docking studies revealed the structural basis of the stereospecific recognition of these enantiomers by their respective transporters. Whereas FetA and FptA have a low sequence identity but high structural homology, the Pch and EPch binding pockets do not share any structural homology, but display similar physicochemical properties. The stereospecific recognition of both enantiomers by their corresponding transporters is imposed by the configuration of the siderophore's C4'' and C2'' chiral centers. This recognition involves specific hydrogen bonds between the Arg91 guanidinium group and EPch-Fe for FetA and between the Leu117-Leu116 main chain and Pch-Fe for FptA. FetA and FptA are the first membrane receptors to be structurally described with opposite binding enantioselectivities for their ligands, giving insights into the structural basis of their enantiospecificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence analysis reveals that the Bacillus subtilis 168 tuaABCDEFGH operon encodes enzymes required for the polymerization of teichuronic acid as well as for the synthesis of one of its precursors, the UDP-glucuronate. Mutants deficient in any of the tua genes, grown in batch cultures under conditions of phosphate limitation, were characterized by reduced amounts of uronate in their cell walls. The teichuronic acid operon belongs to the Pho regulon, as phosphate limitation induces its transcription. Placing the tuaABCDEFGH operon under the control of the inducible Pspac promoter allowed its constitutive expression independently of the phosphate concentration in the medium; the level of uronic acid in cell walls was dependent on the concentration of the inducer. Apparently, owing to an interdependence between teichoic and teichuronic acid incorporation into the cell wall, in examined growth conditions, the balance between the two polymers is maintained in order to insure a constant level of the wall negative charge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effects of intermittent hypoxic training (IHT) on skeletal muscle monocarboxylate lactate transporter (MCT) expression and anaerobic performance in trained athletes. Cyclists were assigned to two interventions, either normoxic (N; n = 8; 150 mmHg PIO2) or hypoxic (H; n = 10; ∼3000 m, 100 mmHg PIO2) over a three week training (5×1 h-1h30.week-1) period. Prior to and after training, an incremental exercise test to exhaustion (EXT) was performed in normoxia together with a 2 min time trial (TT). Biopsy samples from the vastus lateralis were analyzed for MCT1 and MCT4 using immuno-blotting techniques. The peak power output (PPO) increased (p<0.05) after training (7.2% and 6.6% for N and H, respectively), but VO2max showed no significant change. The average power output in the TT improved significantly (7.3% and 6.4% for N and H, respectively). No differences were found in MCT1 and MCT4 protein content, before and after the training in either the N or H group. These results indicate there are no additional benefits of IHT when compared to similar normoxic training. Hence, the addition of the hypoxic stimulus on anaerobic performance or MCT expression after a three-week training period is ineffective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The siderophore pyochelin of Pseudomonas aeruginosa is derived from one molecule of salicylate and two molecules of cysteine. Two cotranscribed genes, pchEF, encoding peptide synthetases have been identified and characterized. pchE was required for the conversion of salicylate to dihydroaeruginoate (Dha), the condensation product of salicylate and one cysteine residue and pchF was essential for the synthesis of pyochelin from Dha. The deduced PchE (156 kDa) and PchF (197 kDa) proteins had adenylation, thiolation and condensation/cyclization motifs arranged as modules which are typical of those peptide synthetases forming thiazoline rings. The pchEF genes were coregulated with the pchDCBA operon, which provides enzymes for the synthesis (PchBA) and activation (PchD) of salicylate as well as a putative thioesterase (PchC). Expression of a translational pchE'-'lacZ fusion was strictly dependent on the PchR regulator and was induced by extracellular pyochelin, the end product of the pathway. Iron replete conditions led to Fur (ferric uptake regulator)-dependent repression of the pchE'-'lacZ fusion. A translational pchD'-'lacZ fusion was also positively regulated by PchR and pyochelin and repressed by Fur and iron. Thus, autoinduction by pyochelin (or ferric pyochelin) and repression by iron ensure a sensitive control of the pyochelin pathway in P. aeruginosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RÉSUMÉ : Chez l'homme, le manque de sélectivité des agents thérapeutiques représente souvent une limitation pour le traitement des maladies. Le ciblage de ces agents pour un tissu défini pourrait augmenter leur sélectivité et ainsi diminuer les effets secondaires en comparaison d'agents qui s'accumuleraient dans tout le corps. Cela pourrait aussi améliorer l'efficacité des traitements en permettant d'avoir une concentration localisée plus importante. Le ciblage d'agents thérapeutiques est un champ de recherche très actif. Les stratégies sont généralement basées sur les différences entre cellules normales et malades. Ces différences peuvent porter soit sur l'expression des molécules à leurs surfaces comme des récepteurs ou des transporteurs, soit sur les activités enzymatiques exprimées. Le traitement thérapeutique choisi ici est la thérapie photodynamique et est déjà utilisé pour le traitement de certains cancers. Cette thérapie repose sur l'utilisation de molécules qui réagissent à la lumière, les photosensibilisants. Elles absorbent l'énergie lumineuse et réagissent avec l'oxygène pour former des radicaux toxiques pour les cellules. Les photosensibilisants utilisés ici sont de deux natures : (i) soit ils sont tétrapyroliques (comme les porphyrines et chlorines), c'est à dire qu'ils sont directement activables par la lumière ; (ii) soit ce sont des prodrogues de photosensibilisants comme l'acide 5aminolévulinique (ALA) qui est transformé dans la cellule en protoporphyrine IX photosensibilisante. Dans le but d'augmenter la sélectivité des photosensibilisants, nous avons utilisé deux stratégies différentes : (i) le photosensibilisant est modifié par le greffage d'un agent de ciblage ; (ii) le photosensibilisant est incorporé dans des structures moléculaires de quelques centaines de nanomètres. Les sucres et l'acide folique sont des agents de ciblage largement établis et ont été utilisés ici car leurs récepteurs sont surexprimés à la surface de nombreuses cellules malades. Ainsi, des dérivés sucres ou acide folique de l'ALA ont été synthétisés et évalués in vitro sur de nombreuses lignées cellulaires cancéreuses. La stratégie utilisant l'acide folique est apparue incompatible avec l'utilisation de l'ALA puisque aucune photosensibilité n'a été induite par le composé. La stratégie utilisant les sucres a, par ailleurs, provoquée de bonnes photosensibilités mais pas d'augmentation de sélectivité. En parallèle, la combinaison entre les propriétés anticancéreuses des complexes métalliques au ruthénium avec les propriétés photosensibilisantes des porphyrines, a été évaluée. En effet, les thérapies combinées ont émergé il y a une dizaine d'années et représentent aujourd'hui de bonnes alternatives aux monothérapies classiques. Des ruthenium(I1)-arènes complexés avec la tetrapyridylporphyrine ont ainsi présenté de bonnes cytotoxicités et de bonnes phototoxicités pour des cellules de mélanomes. Des porphyrines ont aussi été compléxées avec des noyaux de diruthénium et ce type de dérivé a présenté de bonnes phototoxicités et une bonne sélectivité pour les cellules cancéreuses de l'appareil reproducteur féminin. L'incorporation de photosensibilisants tétrapyroliques a finalement été effectuée en utilisant des nanoparticules (NP) biocompatibles composées de chitosan et de hyaluronate. L'effet de ces NP a été évalué pour le traitement de la polyarthrite rhumatoïde (PR). Les NP ont d'abord été testées in vitro avec des macrophages de souris et les résultats ont mis en évidence de bonnes sélectivités et photosensibilités pour ces cellules. In vivo chez un modèle marin de la PR, l'utilisation de ces NP a révélé un plus grand temps de résidence des NP dans le genou de la souris en comparaison du temps obtenu avec le photosensibilisant seul. Le traitement par PDT a aussi démontré une bonne efficacité par ailleurs égale à celle obtenue avec les corticoïdes utilisés en clinique. Pour finir, les NP ont aussi démontré une bonne efficacité sur les myelomonocytes phagocytaires humains et sur les cellules contenues dans le liquide synovial de patients présentant une PR. Tous ces résultats suggèrent que les deux stratégies de ciblage peuvent être efficaces pour les agents thérapeutiques. Afm d'obtenir de bons résultats, il est toutefois nécessaire de réaliser une analyse minutieuse de la cible et du mode d'action de l'agent thérapeutique. Concernant les perspectives, la combinaison des deux stratégies c'est à dire incorporer des agents thérapeutiques dans des nanostructures porteuses d'agents de ciblage, représente probablement une solution très prometteuse. SUMMARY : In humans, the lack of selectivity of drugs and their high effective concentrations often represent limitations for the treatment of diseases. Targeting the therapeutical agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body and could also improve treatment efûciency by allowing a localized high concentration of the agents. Targeting therapeutics to defined cells in human pathologies is a main challenge and a very active field of research. Strategies are generally based on the different behaviors and patterns of expression of diseased cells compared to normal cells such as receptors, proteases or trans-membrane carriers. The therapeutic treatment chosen here is the photodynamic therapy and is already used in the treatment of many cancers. This therapy relies on the administration of a photosensitizer (PS) which will under light, react with oxygen and induce formation of reactive oxygen species which are toxic for cells. The PSs used here are either tetrapyrolic (i. e. porphyries and chlorins) or prodrugs of PS (5-aminolevulinic acid precursor of the endogenous protoporphyrin Imo. In order to improve PS internalization and selectivity, we have used two different strategies: the modification of the PSs with diseased cell-targeting agents as well as their encapsulation into nanostructures. Sugars and folic acid are well established as targeting entities for diseased cells and were used here since their transporters are overexpressed on the surface of many cancer cells. Therefore sugar- and folic acid-derivatives of 5-aminolevulinic acid (ALA) were synthesized and evaluated in vitro in several cancer cell lines. The folic acid strategy appeared to be incompatible with ALA since no photosensitivity was induced while the strategy with sugars induced good photosensitivites but no increase of selectivity. Alternatively, the feasibility of combining the antineoplastic properties of ruthenium complexes with the porphyrin's photosensitizing properties, was evaluated since combined therapies have emerged as good alternatives to classical treatments. Tetrapyridylporphyrins complexed to ruthenium (I17 arenes presented good cytotoxicities and good phototoxicities toward melanoma cells. Porphyries were also complexed to diruthenium cores and this type of compound presented good phototoxicities and good selectivity for female reproductive cancer cells. The encapsulation of tetrapyrolic PSs was finally investigated using biocompatible nanogels composed of chitosan and hyaluronate. The behavior of these nanoparticles was evaluated for the treatment of rheumatoid arthritis (RA). They were first tested in vitro in mouse macrophages and results revealed good selectivities and phototoxicities toward these cells. In vivo in mice model of RA, the use of such nanoparticles instead of free PS showed longer time of residence in mice knees. Photodynamic protocols also demonstrated good efficiency of the treatment comparable to the corticoid injection used in the clinic. Finally our system was also efficient in human cells using phagocytic myelomonocytes or using cells of synovial fluids taken from patients with RA. Altogether, these results revealed that both strategies of modification or encapsulation of drugs can be successful in the targeting of diseased cells. However, a careful analysis of the target and of the mode of action of the drug, are needed in order to obtain good results. Looking ahead to the future, the combination of the two strategies (i.e. drugs loaded into nanostructures bearing the targeting agents) would represent probably the best solution.