126 resultados para Acc (1-aminocyclopropane-1-carboxylic Acid)
Resumo:
JIP-1 is a cytoplasmic inhibitor of the c-Jun amino-terminal kinase activated pathway recently cloned from a mouse brain cDNA library. We report herein the expression cloning of a rat cDNA encoding a JIP-1-related nuclear protein from a pancreatic beta-cell cDNA library that we named IB1 for Islet-Brain 1. IB1 was isolated by its ability to bind to GTII, a cis-regulatory element of the GLUT2 promoter. The IB1 cDNA encodes a 714-amino acid protein, which differs from JIP-1 by the insertion of 47 amino acids in the carboxyl-terminal part of the protein. The remaining 667 amino acids are 97% identical to JIP-1. The 47-amino acid insertion contains a truncated phosphotyrosine interaction domain and a putative helix-loop-helix motif. Recombinant IB1 (amino acids 1-714 and 280-714) was shown to bind in vitro to GTII. Functionally IB1 transactivated the GLUT2 gene. IB1 was localized within the cytoplasm and the nucleus of insulin-secreting cells or COS-7 cells transfected with an expression vector encoding IB1. Using a heterologous GAL4 system, we localized an activation domain of IB1 within the first 280 amino acids of the protein. These data demonstrate that IB1 is a DNA-binding protein related to JIP-1, which is highly expressed in pancreatic beta-cells where it functions as a transactivator of the GLUT2 gene.
Resumo:
(-)-1-(3,4-Dimethoxyphenetylamino)-3-(3,4-dihydroxy)-2-propanol [(-)-RO363] is a highly selective beta(1)-adrenergic receptor (beta(1)AR) agonist. To study the binding site of beta(1)-selective agonist, chimeric beta(1)/beta(2)ARs and Ala-substituted beta(1)ARs were constructed. Several key residues of beta(1)AR [Leu(110) and Thr(117) in transmembrane domain (TMD) 2], and Phe(359) in TMD 7] were found to be responsible for beta(1)-selective binding of (-)-RO363, as determined by competitive binding. Based on these results, we built a three-dimensional model of the binding domain for (-)-RO363. The model indicated that TMD 2 and TMD 7 of beta(1)AR form a binding pocket; the methoxyphenyl group of N-substituent of (-)-RO363 seems to locate within the cavity surrounded by Leu(110), Thr(117), and Phe(359). The amino acids Leu(110) and Phe(359) interact with the phenyl ring of (-)-RO363, whereas Thr(117) forms hydrogen bond with the methoxy group of (-)-RO363. To examine the interaction of these residues with beta(1)AR in an active state, each of the amino acids was changed to Ala in a constitutively active (CA)-beta(1)AR mutant. The degree of decrease in the affinity of CA-beta(1)AR for (-)-RO363 was essentially the same as that of wild-type beta(1)AR when mutated at Leu(110) and Thr(117). However, the affinity was decreased in Ala-substituted mutant of Phe(359) compared with that of wild-type beta(1)AR. These results indicated that Leu(110) and Thr(117) are necessary for the initial binding of (-)-RO363 with beta(1)-selectivity, and interaction of Phe(359) with the N-substituent of (-)-RO363 in an active state is stronger than in the resting state.
Resumo:
Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6(gag)-p6(pol) region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6(Gag)), or by changes in activation of the viral protease (p6(Pol)). Duplication of the proline-rich p6(Gag) PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6(Pol)), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.
Resumo:
The adrenergic receptors (ARs) belong to the superfamily of membrane-bound G protein coupled receptors (GPCRs). Our investigation has focused on the structure-function relationship of the alpha 1b-AR subtype used as the model system for other GPCRs. Site-directed mutagenesis studies have elucidated the structural domains of the alpha 1b-AR involved in ligand binding, G protein coupling or desensitization. In addition, a combined approach using site-directed mutagenesis and molecular dynamics analysis of the alpha 1b-AR has provided information about the potential mechanisms underlying the activation process of the receptor, i.e. its transition from the 'inactive' to the 'active' conformation.
Resumo:
Glucagon-like peptide-1 (GLP-1) stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor linked to activation of the adenylyl cyclase pathway. Here, using insulinoma cell lines, we studied homologous and heterologous desensitization of GLP-1-induced cAMP production. Preexposure of the cells to GLP-1 induced a decrease in GLP-1-mediated cAMP production, as assessed by a 3- to 5-fold rightward shift of the dose-response curve and an approximately 20 percent decrease in the maximal production of cAMP. Activation of protein kinase C by the phorbol ester phorbol 12-myristate 13-acetate (PMA) also induced desensitization of the GLP-1-mediated response, leading to a 6- to 9-fold shift in the EC50 and a 30% decrease in the maximal production of cAMP. Both forms of desensitization were additive, and the protein kinase C inhibitor RO-318220 inhibited PMA-induced desensitization, but not agonist-induced desensitization. GLP-1- and PMA-dependent desensitization correlated with receptor phosphorylation, and the levels of phosphorylation induced by the two agents were additive. Furthermore, PMA-induced, but not GLP-1-induced, phosphorylation was totally inhibited by RO-318220. Internalization of the GLP-1 receptor did not participate in the desensitization induced by PMA, as a mutant GLP-1 receptor lacking the last 20 amino acids of the cytoplasmic tail was found to be totally resistant to the internalization process, but was still desensitized after PMA preexposure. PMA and GLP-1 were not able to induce the phosphorylation of a receptor deletion mutant lacking the last 33 amino acids of the cytoplasmic tail, indicating that the phosphorylation sites were located within the deleted region. The cAMP production mediated by this deletion mutant was not desensitized by PMA and was only poorly desensitized by GLP-1. Together, our results indicate that the production of cAMP and, hence, the stimulation of insulin secretion induced by GLP-1 can be negatively modulated by homologous and heterologous desensitization, mechanisms that involve receptor phosphorylation.
Resumo:
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.
Resumo:
We have reported the identification of human gene MAGE-1, which directs the expression of an antigen recognized on a melanoma by autologous cytolytic T lymphocytes (CTL). We show here that CTL directed against this antigen, which was named MZ2-E, recognize a nonapeptide encoded by the third exon of gene MAGE-1. The CTL also recognize this peptide when it is presented by mouse cells transfected with an HLA-A1 gene, confirming the association of antigen MZ2-E with the HLA-A1 molecule. Other members of the MAGE gene family do not code for the same peptide, suggesting that only MAGE-1 produces the antigen recognized by the anti-MZ2-E CTL. Our results open the possibility of immunizing HLA-A1 patients whose tumor expresses MAGE-1 either with the antigenic peptide or with autologous antigen-presenting cells pulsed with the peptide.
Resumo:
The Melan-A/MART-1 gene, which is expressed by normal melanocytes as well as by most fresh melanoma samples and melanoma cell lines, codes for Ags recognized by tumor-reactive CTL. HLA-A*0201-restricted Melan-A-specific CTL recognize primarily the Melan-A(27-35) (AAGIGILTV) and the Melan-A(26-35) (EAAGIGILTV) peptides. The sequences of these two peptides are not necessarily optimal as far as binding to HLA-A*0201 is concerned, since both lack one of the dominant anchor amino acid residues (leucine or methionine) at position 2. In this study we introduced single amino acid substitutions in either one of the two natural peptide sequences with the aim of improving peptide binding to HLA-A*0201 and/or recognition by specific CTL. Surprisingly, analogues of the Melan-A(27-35) peptide, which bound more efficiently than the natural nonapeptide to HLA-A*0201, were poorly recognized by tumor-reactive CTL. In contrast, among the Melan-A(26-35) peptide analogues tested, the peptide ELAGIGILTV was not only able to display stable binding to HLA-A2.1 but was also recognized more efficiently than the natural peptide by two short-term cultured tumor-infiltrated lymph node cell cultures as well as by five of five tumor-reactive CTL clones. Moreover, in vitro generation of tumor-reactive CTL by stimulation of PBMC from HLA-A*0201 melanoma patients with this particular peptide analogue was much more efficient than that observed with either one of the two natural peptides. These results suggest that the Melan-A(26-35) peptide analogue ELAGIGILTV may be more immunogenic than the natural peptides in HLA-A*0201 melanoma patients and should thus be considered as a candidate for future peptide-based vaccine trials.
Resumo:
Homologous desensitization and internalization of the GLP-1 receptor correlate with phosphorylation of the receptor in a 33-amino acid segment of the cytoplasmic tail. Here, we identify the sites of phosphorylation as being three serine doublets located at positions 441/442, 444/445, and 451/452. The role of phosphorylation on homologous desensitization was assessed after stable expression in fibroblasts of the wild type or of mutant receptors in which phosphorylation sites were changed in various combinations to alanines. We showed that desensitization, as measured by a decrease in the maximal production of cAMP after a first exposure of the cells to GLP-1, was strictly dependent on phosphorylation. Furthermore, the number of phosphorylation sites correlated with the extent of desensitization with no, intermediate, or maximal desensitization observed in the presence of one, two, or three phosphorylation sites, respectively. Internalization of the receptor-ligand complex was assessed by measuring the rate of internalization of bound [125I]GLP-1 or the redistribution of the receptor to an endosomal compartment after agonist binding. Our data demonstrate that internalization was prevented in the absence of receptor phosphorylation and that intermediate rates of endocytosis were obtained with receptors containing one or two phosphorylation sites. Thus, homologous desensitization and internalization require phosphorylation of the receptor at the same three sites. However, the differential quantitative impairment of these two processes in the single and double mutants suggests different molecular mechanisms controlling desensitization and internalization.
Resumo:
PURPOSE: As compared with natural tumor peptide sequences, carefully selected analog peptides may be more immunogenic and thus better suited for vaccination. However, T cells in vivo activated by such altered analog peptides may not necessarily be tumor specific because sequence and structure of peptide analogs differ from corresponding natural peptides. EXPERIMENTAL DESIGN: Three melanoma patients were immunized with a Melan-A peptide analog that binds more strongly to HLA-A*0201 and is more immunogenic than the natural sequence. This peptide was injected together with a saponin-based adjuvant, followed by surgical removal of lymph node(s) draining the site of vaccination. RESULTS: Ex vivo analysis of vaccine site draining lymph nodes revealed antigen-specific CD8+ T cells, which had differentiated to memory cells. In vitro, these cells showed accelerated proliferation upon peptide stimulation. Nearly all (16 of 17) of Melan-A-specific CD8+ T-cell clones generated from these lymph nodes efficiently killed melanoma cells. CONCLUSIONS: Patient immunization with the analog peptide leads to in vivo activation of T cells that were specific for the natural tumor antigen, demonstrating the usefulness of the analog peptide for melanoma immunotherapy.
Resumo:
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of immunity against pathogens. However, HIV-1 spread is strongly enhanced in clusters of DCs and CD4(+) T cells. Uninfected DCs capture HIV-1 and mediate viral transfer to bystander CD4(+) T cells through a process termed trans-infection. Initial studies identified the C-type lectin DC-SIGN as the HIV-1 binding factor on DCs, which interacts with the viral envelope glycoproteins. Upon DC maturation, however, DC-SIGN is down-regulated, while HIV-1 capture and trans-infection is strongly enhanced via a glycoprotein-independent capture pathway that recognizes sialyllactose-containing membrane gangliosides. Here we show that the sialic acid-binding Ig-like lectin 1 (Siglec-1, CD169), which is highly expressed on mature DCs, specifically binds HIV-1 and vesicles carrying sialyllactose. Furthermore, Siglec-1 is essential for trans-infection by mature DCs. These findings identify Siglec-1 as a key factor for HIV-1 spread via infectious DC/T-cell synapses, highlighting a novel mechanism that mediates HIV-1 dissemination in activated tissues.
Resumo:
The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic "signature residue" at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket.
Resumo:
The synthesis of a photoreactive derivative of the human leukocyte antigen-A1 (HLA-A1)-restricted MAGE-1 peptide 161-169 (EADPTGHSY) is described. Using conventional automated solid-phase peptide synthesis, a photoreactive derivative of this peptide was synthesized by replacing histidine-167 with photo-reactive N-beta-4-azidosalicyloyl-L-2,3-diaminopropionic acid. The C-terminal tyrosine was incorporated as phosphotyrosine. This peptide derivative was radioiodinated in the presence of chloramine T. This iodination took place selectively at the photoreactive group, because the phosphate ester prevented tyrosine iodination. Following dephosphorylation with alkaline phosphatase and chromatographic purification, the radiolabeled peptide derivative was incubated with cells expressing HLA-A1 or other HLA molecules. Photoactivation resulted in efficient photoaffinity labeling of HLA-A1. Other HLA molecules or other cellular components were not detectably labeled. This labeling was inhibited by HLA-A1 but not by HLA-A2-binding peptides. This synthesis is generally applicable and can also be adapted to the synthesis of well-defined radiolabeled nonphotoreactive peptide derivatives.
Resumo:
Biosynthesis of active endothelin-1 (ET-1) implies an enzymatic processing of the inactive precursor Big ET-1 (1-39) into the mature, 21 amino acid peptide. The aim of this study was to characterize in airway and alveolar epithelial cells the enzymes responsible for this activation. BEAS-2B and A549 cells, which both produce ET-1, were studied in vitro as models for bronchiolar and alveolar cells, respectively. Both cell lines were able to convert exogenously added Big ET-1 (0.1 microM) into ET-1, suggesting a cell surface or an extracellular processing. The conversion was inhibited by phosphoramidon in both cell lines with an IC50 approximately 1 microM, but not by thiorphan, a specific inhibitor of neutral endopeptidase 24.11 (NEP). The endogenous production of serum-stimulated BEAS-2B and A549 cells was not inhibited by thiorphan, and phosphoramidon showed inhibition only at high concentration (>100 microM). Western blotting following electrophoresis in reducing conditions demonstrated a protein of MR 110 corresponding to the ECE-1 monomer in both BEAS-2B and A549 cells, as well as in whole lung extracts. By RT-PCR we revealed the mRNA encoding for the ECE-1b and/or -1c subtype, but not ECE-1a, in both cell lines. We conclude that BEAS-2B and A549 cells are able to process either endogenous or exogenous Big ET-1 by ECE-1 and that isoforms 1b and 1c could be involved in this processing with no significant role of NEP.
Resumo:
We report that caveolin-1, one of the major structural protein of caveolae, interacts with TCP-1, a hetero-oligomeric chaperone complex present in all eukaryotic cells that contributes mainly to the folding of actin and tubulin. The caveolin-TCP-1 interaction entails the first 32 amino acids of the N-terminal segment of caveolin. Our data show that caveolin-1 expression is needed for the induction of TCP-1 actin folding function in response to insulin stimulation. Caveolin-1 phosphorylation at tyrosine residue 14 induces the dissociation of caveolin-1 from TCP-1 and activates actin folding. We show that the mechanism by which caveolin-1 modulates TCP-1 activity is indirect and involves the cytoskeleton linker filamin. Filamin is known to bind caveolin-1 and to function as a negative regulator of insulin-mediated signaling. Our data support the notion that the caveolin-filamin interaction contributes to restore insulin-mediated phosphorylation of caveolin, thus allowing the release of active TCP-1.