167 resultados para 300701 Physiology and Genetics
Resumo:
Arthroderma benhamiae is a zoophilic dermatophyte belonging to the Trichophyton mentagrophytes species complex. Here, a population of A. benhamiae wild strains from the same geographical area (Switzerland) was studied by comparing their morphology, assessing their molecular variability using internal transcribed spacer (ITS) and 28S rRNA gene sequencing, and evaluating their interfertility. Sequencing of the ITS region and of part of the 28S rRNA gene revealed the existence of two infraspecific groups with markedly different colony phenotypes: white (group I) and yellow (group II), respectively. For all strains, the results of mating type identification by PCR, using HMG (high-mobility group) and α-box genes in the mating type locus as targets, were in total accordance with the results of mating type identification by strain confrontation experiments. White-phenotype strains were of mating type + (mt+) or mating type - (mt-), whilst yellow-phenotype strains were all mt-. White and yellow strains were found to produce fertile cleistothecia after mating with A. benhamiae reference tester strains, which belonged to a third group intermediate between groups I and II. However, no interfertility was observed between yellow strains and white strains of mt+. A significant result was that white strains of mt- were able to mate and produce fertile cleistothecia with the white A. benhamiae strain CBS 112371 (mt+), the genome of which has recently been sequenced and annotated. This finding should offer new tools for investigating the biology and genetics of dermatophytes using wild-type strains.
Resumo:
Fungal symbionts commonly occur in plants influencing host growth, physiology, and ecology (Carlile et al., 2001). However, while whole-plant growth responses to biotrophic fungi are readily demonstrated, it has been much more difficult to identify and detect the physiological mechanisms responsible. Previous work on the clonal grass Glyceria striata has revealed that the systemic fungal endophyte Epichloë glyceriae has a positive effect on clonal growth of its host (Pan & Clay, 2002; 2003). The latest study from these authors, in this issue (pp. 467- 475), now suggests that increased carbon movement in hosts infected by E. glyceriae may function as one mechanism by which endophytic fungi could increase plant growth. Given the widespread distribution of both clonal plants and symbiotic fungi, this research will have implications for our understanding of the ecology and evolution of fungus-plant associations in natural communities.
Resumo:
Elucidating the molecular and neural basis of complex social behaviors such as communal living, division of labor and warfare requires model organisms that exhibit these multi-faceted behavioral phenotypes. Social insects, such as ants, bees, wasps and termites, are attractive models to address this problem, with rich ecological and ethological foundations. However, their atypical systems of reproduction have hindered application of classical genetic approaches. In this review, we discuss how recent advances in social insect genomics, transcriptomics, and functional manipulations have enhanced our ability to observe and perturb gene expression, physiology and behavior in these species. Such developments begin to provide an integrated view of the molecular and cellular underpinnings of complex social behavior.
Resumo:
The morphological and functional diversity of astrocytes, and their essential contribution in physiological and pathological conditions, are starting to emerge. However, experimental systems to investigate neuron-glia interactions and develop innovative approaches for the treatment of central nervous system (CNS) disorders are still very limited. Fluorescent reporter genes have been used to visualize populations of astrocytes and produce an atlas of gene expression in the brain. Knock-down or knock-out of astrocytic proteins using transgenesis have also been developed, but these techniques remain complex and time-consuming. Viral vectors have been developed to overexpress or silence genes of interest as they can be used for both in vitro and in vivo studies in adult mammalian species. In most cases, high transduction efficiency and long-term transgene expression are observed in neurons but there is limited expression in astrocytes. Several strategies have been developed to shift the tropism of lentiviral vectors (LV) and allow local and controlled gene expression in glial cells. In this review, we describe how modifications of the interaction between the LV envelope glycoprotein and the surface receptor molecules on target cells, or the integration of cell-specific promoters and miRNA post-transcriptional regulatory elements have been used to selectively express transgenes in astrocytes.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form extremely important mutualistic symbioses with most plants. Their role in nutrient acquisition, plant community structure, plant diversity, and ecosystem productivity and function has been demonstrated in recent years. New findings on the genetics and biology of AMF also give us a new picture of how these fungi exist in ecosystems. In this article, I bring together some recent findings that indicate that AMF have evolved to contain multiple genomes, that they connect plants together by a hyphal network, and that these different genomes may potentially move around in this network. These findings show the need for more intensive studies on AMF population biology and genetics in order to understand how they have evolved with plants, to better understand their ecological role, and for applying AMF in environmental management programs and in agriculture. A number of key features of AMF population biology have been identified for future studies and most of these concern the need to understand drift, selection, and genetic exchange in multigenomic organisms, a task that has not previously presented itself to evolutionary biologists.
Resumo:
A class of secreted poxvirus tumor necrosis factor (TNF)-binding proteins has been isolated from Tanapox-infected cell supernatants. The inhibitor bound to a TNF-affinity column and was identified as the product of the 2L gene. Sequence analysis of 2L family members from other yatapoxviruses and swinepox virus yielded no sequence homology to any known cellular gene. The expressed Tanapox virus 2L protein bound to human TNF with high affinity (K(d) = 43 pM) and exhibits an unusually slow off-rate. However, 2L is unable to bind to a wide range of human TNF family members. The 2L protein can inhibit human TNF from binding to TNF receptors I and II as well as block TNF-induced cytolysis. Thus, Tanapox virus 2L represents an inhibitor of human TNF and offers a unique strategy with which to modulate TNF activity.
Resumo:
BACKGROUND: The exceptionally diverse species flocks of cichlid fishes in East Africa are prime examples of parallel adaptive radiations. About 80% of East Africa's more than 1 800 endemic cichlid species, and all species of the flocks of Lakes Victoria and Malawi, belong to a particularly rapidly evolving lineage, the haplochromines. One characteristic feature of the haplochromines is their possession of egg-dummies on the males' anal fins. These egg-spots mimic real eggs and play an important role in the mating system of these maternal mouthbrooding fish. RESULTS: Here, we show that the egg-spots of haplochromines are made up of yellow pigment cells, xanthophores, and that a gene coding for a type III receptor tyrosine kinase, colony-stimulating factor 1 receptor a (csf1ra), is expressed in egg-spot tissue. Molecular evolutionary analyses reveal that the extracellular ligand-binding and receptor-interacting domain of csf1ra underwent adaptive sequence evolution in the ancestral lineage of the haplochromines, coinciding with the emergence of egg-dummies. We also find that csf1ra is expressed in the egg-dummies of a distantly related cichlid species, the ectodine cichlid Ophthalmotilapia ventralis, in which markings with similar functions evolved on the pelvic fin in convergence to those of the haplochromines. CONCLUSION: We conclude that modifications of existing signal transduction mechanisms might have evolved in the haplochromine lineage in association with the origination of anal fin egg-dummies. That positive selection has acted during the evolution of a color gene that seems to be involved in the morphogenesis of a sexually selected trait, the egg-dummies, highlights the importance of further investigations of the comparative genomic basis of the phenotypic diversification of cichlid fishes.
Resumo:
High-molecular-weight (HMW) penicillin-binding proteins (PBPs) are divided into class A and class B PBPs, which are bifunctional transpeptidases/transglycosylases and monofunctional transpeptidases, respectively. We determined the sequences for the HMW PBP genes of Streptococcus gordonii, a gingivo-dental commensal related to Streptococcus pneumoniae. Five HMW PBPs were identified, including three class A (PBPs 1A, 1B, and 2A) and two class B (PBPs 2B and 2X) PBPs, by homology with those of S. pneumoniae and by radiolabeling with [3H]penicillin. Single and double deletions of each of them were achieved by allelic replacement. All could be deleted, except for PBP 2X, which was essential. Morphological alterations occurred after deletion of PBP 1A (lozenge shape), PBP 2A (separation defect and chaining), and PBP 2B (aberrant septation and premature lysis) but not PBP 1B. The muropeptide cross-link patterns remained similar in all strains, indicating that cross-linkage for one missing PBP could be replaced by others. However, PBP 1A mutants presented shorter glycan chains (by 30%) and a relative decrease (25%) in one monomer stem peptide. Growth rate and viability under aeration, hyperosmolarity, and penicillin exposure were affected primarily in PBP 2B-deleted mutants. In contrast, chain-forming PBP 2A-deleted mutants withstood better aeration, probably because they formed clusters that impaired oxygen diffusion. Double deletion could be generated with any PBP combination and resulted in more-altered mutants. Thus, single deletion of four of the five HMW genes had a detectable effect on the bacterial morphology and/or physiology, and only PBP 1B seemed redundant a priori.
Resumo:
INTRODUCTION: In November 2009, the "3rd Summit on Osteoporosis-Central and Eastern Europe (CEE)" was held in Budapest, Hungary. The conference aimed to tackle issues regarding osteoporosis management in CEE identified during the second CEE summit in 2008 and to agree on approaches that allow most efficient and cost-effective diagnosis and therapy of osteoporosis in CEE countries in the future. DISCUSSION: The following topics were covered: past year experience from FRAX® implementation into local diagnostic algorithms; causes of secondary osteoporosis as a FRAX® risk factor; bone turnover markers to estimate bone loss, fracture risk, or monitor therapies; role of quantitative ultrasound in osteoporosis management; compliance and economical aspects of osteoporosis; and osteoporosis and genetics. Consensus and recommendations developed on these topics are summarised in the present progress report. CONCLUSION: Lectures on up-to-date data of topical interest, the distinct regional provenances of the participants, a special focus on practical aspects, intense mutual exchange of individual experiences, strong interest in cross-border cooperations, as well as the readiness to learn from each other considerably contributed to the establishment of these recommendations. The "4th Summit on Osteoporosis-CEE" held in Prague, Czech Republic, in December 2010 will reveal whether these recommendations prove of value when implemented in the clinical routine or whether further improvements are still required.
Resumo:
Rest or sleep in all animal species constitutes a period of quiescence necessary for recovery from activity. Whether rest and activity observed in all organisms share a similar fundamental molecular basis with sleep and wakefulness in mammals has not yet been established. In addition and in contrast to the circadian system, strong evidence that sleep is regulated at the transcriptional level is lacking. Nevertheless, several studies indicate that single genesmay regulate some specific aspects of sleep. Efforts to better understand or confirm the role of known neurotransmission pathways in sleep-wake regulation using transgenic approaches resulted so far in only limited new insights. Recent gene expression profiling efforts in rats, mice, and fruit flies are promising and suggest that only a few gene categories are differentially regulated by behavioral state. How molecular analysis can help us to understand sleep is the focus of this chapter.
Resumo:
Neural comparisons of bilateral sensory inputs are essential for visual depth perception and accurate localization of sounds in space. All animals, from single-cell prokaryotes to humans, orient themselves in response to environmental chemical stimuli, but the contribution of spatial integration of neural activity in olfaction remains unclear. We investigated this problem in Drosophila melanogaster larvae. Using high-resolution behavioral analysis, we studied the chemotaxis behavior of larvae with a single functional olfactory neuron on either the left or right side of the head, allowing us to examine unilateral or bilateral olfactory input. We developed new spectroscopic methods to create stable odorant gradients in which odor concentrations were experimentally measured. In these controlled environments, we observed that a single functional neuron provided sufficient information to permit larval chemotaxis. We found additional evidence that the overall accuracy of navigation is enhanced by the increase in the signal-to-noise ratio conferred by bilateral sensory input.
Resumo:
There is evidence that obesity-related disorders are increased among people with depression. Variation in the FTO (fat mass and obesity associated) gene has been shown to contribute to common forms of human obesity. This study aimed to investigate the genetic influence of polymorphisms in FTO in relation to body mass index (BMI) in two independent samples of major depressive disorder (MDD) cases and controls. We analysed 88 polymorphisms in the FTO gene in a clinically ascertained sample of 2442 MDD cases and 809 controls (Radiant Study). In all, 8 of the top 10 single-nucleotide polymorphisms (SNPs) showing the strongest associations with BMI were followed-up in a population-based cohort (PsyCoLaus Study) consisting of 1292 depression cases and 1690 controls. Linear regression analyses of the FTO variants and BMI yielded 10 SNPs significantly associated with increased BMI in the depressive group but not the control group in the Radiant sample. The same pattern was found in the PsyCoLaus sample. We found a significant interaction between genotype and affected status in relation to BMI for seven SNPs in Radiant (P<0.0057), with PsyCoLaus giving supportive evidence for five SNPs (P-values between 0.03 and 0.06), which increased in significance when the data were combined in a meta-analysis. This is the first study investigating FTO and BMI within the context of MDD, and the results indicate that having a history of depression moderates the effect of FTO on BMI. This finding suggests that FTO is involved in the mechanism underlying the association between mood disorders and obesity.
Resumo:
Today, there are still uncertainties about the role of exogenous fat on body fat regulation. Early models of energy utilization (for example, Kleiber's, early 20th century) failed to take into account the nature of substrate oxidized in the control of food intake, whereas more recent models (e.g., Flatt's model, end of 20th century) did. Excess body fat storage is ultimately a problem of chronic positive energy balance mediated by a poor control of energy intake or/and a blunted total energy expenditure. Excess fat storage can stem from exogenous fat and to a more limited extent by nonfat substrates precursors transformed into body fat, mostly from carbohydrates, a process known as de novo lipogenesis. When considered over periods of weeks, months or years, total fat balance is closely related to energy balance. Over periods of days, the net change in fat balance is quantitatively limited as compared to the size of endogenous fat storage. The issues discussed in this article primarily include the stimulation of de novo lipogenesis after acute or prolonged CHO overfeeding and whether de novo lipogenesis is a risk factor for obesity development.
Resumo:
PURPOSE OF REVIEW: We present an overview of recent concepts in mechanisms underlying cognitive decline associated with brain aging and neurodegeneration from the perspective of MRI. RECENT FINDINGS: Recent findings challenge the established link between neuroimaging biomarkers of neurodegeneration and age-related or disease-related cognitive decline. Amyloid burden, white matter hyperintensities and local patterns of brain atrophy seem to have differential impact on cognition, particularly on episodic and working memory - the most vulnerable domains in 'normal aging' and Alzheimer's disease. Studies suggesting that imaging biomarkers of neurodegeneration are independent of amyloid-β give rise to new hypothesis regarding the pathological cascade in Alzheimer's disease. Findings in patients with autosomal-dominant Alzheimer's disease confirm the notion of differential temporal trajectory of amyloid deposition and brain atrophy to add another layer of complexity on the basic mechanisms of cognitive aging and neurodegeneration. Finally, the concept of cognitive reserve in 'supernormal aging' is questioned by evidence for the preservation of neurochemical, structural and functional brain integrity in old age rather than recruitment of 'reserves' for maintaining cognitive abilities. SUMMARY: Recent advances in clinical neuroscience, brain imaging and genetics challenge pathophysiological hypothesis of neurodegeneration and cognitive aging dominating the field in the last decade and call for reconsidering the choice of therapeutic window for early intervention.