81 resultados para 3-D trunk image analysis
Dynamic single cell measurements of kinase activity by synthetic kinase activity relocation sensors.
Resumo:
BACKGROUND: Mitogen activated protein kinases (MAPK) play an essential role in integrating extra-cellular signals and intra-cellular cues to allow cells to grow, adapt to stresses, or undergo apoptosis. Budding yeast serves as a powerful system to understand the fundamental regulatory mechanisms that allow these pathways to combine multiple signals and deliver an appropriate response. To fully comprehend the variability and dynamics of these signaling cascades, dynamic and quantitative single cell measurements are required. Microscopy is an ideal technique to obtain these data; however, novel assays have to be developed to measure the activity of these cascades. RESULTS: We have generated fluorescent biosensors that allow the real-time measurement of kinase activity at the single cell level. Here, synthetic MAPK substrates were engineered to undergo nuclear-to-cytoplasmic relocation upon phosphorylation of a nuclear localization sequence. Combination of fluorescence microscopy and automated image analysis allows the quantification of the dynamics of kinase activity in hundreds of single cells. A large heterogeneity in the dynamics of MAPK activity between individual cells was measured. The variability in the mating pathway can be accounted for by differences in cell cycle stage, while, in the cell wall integrity pathway, the response to cell wall stress is independent of cell cycle stage. CONCLUSIONS: These synthetic kinase activity relocation sensors allow the quantification of kinase activity in live single cells. The modularity of the architecture of these reporters will allow their application in many other signaling cascades. These measurements will allow to uncover new dynamic behaviour that previously could not be observed in population level measurements.
Resumo:
The quality of sample inoculation is critical for achieving an optimal yield of discrete colonies in both monomicrobial and polymicrobial samples to perform identification and antibiotic susceptibility testing. Consequently, we compared the performance between the InoqulA (BD Kiestra), the WASP (Copan), and manual inoculation methods. Defined mono- and polymicrobial samples of 4 bacterial species and cloudy urine specimens were inoculated on chromogenic agar by the InoqulA, the WASP, and manual methods. Images taken with ImagA (BD Kiestra) were analyzed with the VisionLab version 3.43 image analysis software to assess the quality of growth and to prevent subjective interpretation of the data. A 3- to 10-fold higher yield of discrete colonies was observed following automated inoculation with both the InoqulA and WASP systems than that with manual inoculation. The difference in performance between automated and manual inoculation was mainly observed at concentrations of >10(6) bacteria/ml. Inoculation with the InoqulA system allowed us to obtain significantly more discrete colonies than the WASP system at concentrations of >10(7) bacteria/ml. However, the level of difference observed was bacterial species dependent. Discrete colonies of bacteria present in 100- to 1,000-fold lower concentrations than the most concentrated populations in defined polymicrobial samples were not reproducibly recovered, even with the automated systems. The analysis of cloudy urine specimens showed that InoqulA inoculation provided a statistically significantly higher number of discrete colonies than that with WASP and manual inoculation. Consequently, the automated InoqulA inoculation greatly decreased the requirement for bacterial subculture and thus resulted in a significant reduction in the time to results, laboratory workload, and laboratory costs.
Resumo:
Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption.
Resumo:
Chromogenic immunohistochemistry (IHC) is omnipresent in cancer diagnosis, but has also been criticized for its technical limit in quantifying the level of protein expression on tissue sections, thus potentially masking clinically relevant data. Shifting from qualitative to quantitative, immunofluorescence (IF) has recently gained attention, yet the question of how precisely IF can quantify antigen expression remains unanswered, regarding in particular its technical limitations and applicability to multiple markers. Here we introduce microfluidic precision IF, which accurately quantifies the target expression level in a continuous scale based on microfluidic IF staining of standard tissue sections and low-complexity automated image analysis. We show that the level of HER2 protein expression, as continuously quantified using microfluidic precision IF in 25 breast cancer cases, including several cases with equivocal IHC result, can predict the number of HER2 gene copies as assessed by fluorescence in situ hybridization (FISH). Finally, we demonstrate that the working principle of this technology is not restricted to HER2 but can be extended to other biomarkers. We anticipate that our method has the potential of providing automated, fast and high-quality quantitative in situ biomarker data using low-cost immunofluorescence assays, as increasingly required in the era of individually tailored cancer therapy.
Resumo:
X-ray medical imaging is increasingly becoming three-dimensional (3-D). The dose to the population and its management are of special concern in computed tomography (CT). Task-based methods with model observers to assess the dose-image quality trade-off are promising tools, but they still need to be validated for real volumetric images. The purpose of the present work is to evaluate anthropomorphic model observers in 3-D detection tasks for low-contrast CT images. We scanned a low-contrast phantom containing four types of signals at three dose levels and used two reconstruction algorithms. We implemented a multislice model observer based on the channelized Hotelling observer (msCHO) with anthropomorphic channels and investigated different internal noise methods. We found a good correlation for all tested model observers. These results suggest that the msCHO can be used as a relevant task-based method to evaluate low-contrast detection for CT and optimize scan protocols to lower dose in an efficient way.
Resumo:
BACKGROUND: Most peripheral T-cell lymphoma (PTCL) patients have a poor outcome and the identification of prognostic factors at diagnosis is needed. PATIENTS AND METHODS: The prognostic impact of total metabolic tumor volume (TMTV0), measured on baseline [(18)F]2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography, was evaluated in a retrospective study including 108 PTCL patients (27 PTCL not otherwise specified, 43 angioimmunoblastic T-cell lymphomas and 38 anaplastic large-cell lymphomas). All received anthracycline-based chemotherapy. TMTV0 was computed with the 41% maximum standardized uptake value threshold method and an optimal cut-off point for binary outcomes was determined and compared with others prognostic factors. RESULTS: With a median follow-up of 23 months, 2-year progression-free survival (PFS) was 49% and 2-year overall survival (OS) was 67%. High TMTV0 was significantly associated with a worse prognosis. At 2 years, PFS was 26% in patients with a high TMTV0 (>230 cm(3), n = 53) versus 71% for those with a low TMTV0, [P < 0.0001, hazard ratio (HR) = 4], whereas OS was 50% versus 80%, respectively, (P = 0.0005, HR = 3.1). In multivariate analysis, TMTV0 was the only significant independent parameter for both PFS and OS. TMTV0, combined with PIT, discriminated even better than TMTV0 alone, patients with an adverse outcome (TMTV0 >230 cm(3) and PIT >1, n = 33,) from those with good prognosis (TMTV0 ≤230 cm(3) and PIT ≤1, n = 40): 19% versus 73% 2-year PFS (P < 0.0001) and 43% versus 81% 2-year OS, respectively (P = 0.0002). Thirty-one patients (other TMTV0-PIT combinations) had an intermediate outcome, 50% 2-year PFS and 68% 2-year OS. CONCLUSION: TMTV0 appears as an independent predictor of PTCL outcome. Combined with PIT, it could identify different risk categories at diagnosis and warrants further validation as a prognostic marker.