109 resultados para 3 beta-HSD


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. While all three receptors are undetectable in adult mouse interfollicular epidermis, PPARbeta expression and activity is strongly re-activated by inflammatory stimuli during epidermal injury. The pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) stimulates transcription of the PPARbeta gene via an activator protein-1 site in its promoter and it also triggers the production of PPARbeta ligands in keratinocytes. This increase of PPARbeta activity in these cells up-regulates the expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1, which phosphorylates protein kinase B-alpha (Akt1). The resulting increase in Akt1 activity suppresses apoptosis and ensures the presence of a sufficient number of viable keratinocytes at the wound margin for re-epithelialization. Together, these observations reveal that PPARbeta takes on multiple roles and contributes favourably to the process of wound closure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes is associated with significant changes in plasma concentrations of lipoproteins. We tested the hypothesis that lipoproteins modulate the function and survival of insulin-secreting cells. We first detected the presence of several receptors that participate in the binding and processing of plasma lipoproteins and confirmed the internalization of fluorescent low density lipoprotein (LDL) and high density lipoprotein (HDL) particles in insulin-secreting beta-cells. Purified human very low density lipoprotein (VLDL) and LDL particles reduced insulin mRNA levels and beta-cell proliferation and induced a dose-dependent increase in the rate of apoptosis. In mice lacking the LDL receptor, islets showed a dramatic decrease in LDL uptake and were partially resistant to apoptosis caused by LDL. VLDL-induced apoptosis of beta-cells involved caspase-3 cleavage and reduction in the levels of the c-Jun N-terminal kinase-interacting protein-1. In contrast, the proapoptotic signaling of lipoproteins was antagonized by HDL particles or by a small peptide inhibitor of c-Jun N-terminal kinase. The protective effects of HDL were mediated, in part, by inhibition of caspase-3 cleavage and activation of Akt/protein kinase B. In conclusion, human lipoproteins are critical regulators of beta-cell survival and may therefore contribute to the beta-cell dysfunction observed during the development of type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In normal retinas, amyloid-β (Aβ) accumulates in the subretinal space, at the interface of the retinal pigment epithelium, and the photoreceptor outer segments. However, the molecular and cellular effects of subretinal Aβ remain inadequately elucidated. We previously showed that subretinal injection of Aβ(1-42) induces retinal inflammation, followed by photoreceptor cell death. The retinal Müller glial (RMG) cells, which are the principal retinal glial cells, are metabolically coupled to photoreceptors. Their role in the maintenance of retinal water/potassium and glutamate homeostasis makes them important players in photoreceptor survival. This study investigated the effects of subretinal Aβ(1-42) on RMG cells and of Aβ(1-42)-induced inflammation on retinal homeostasis. RMG cell gliosis (upregulation of GFAP, vimentin, and nestin) on day 1 postinjection and a proinflammatory phenotype were the first signs of retinal alteration induced by Aβ(1-42). On day 3, we detected modifications in the protein expression patterns of cyclooxygenase 2 (COX-2), glutamine synthetase (GS), Kir4.1 [the inwardly rectifying potassium (Kir) channel], and aquaporin (AQP)-4 water channels in RMG cells and of the photoreceptor-associated AQP-1. The integrity of the blood-retina barrier was compromised and retinal edema developed. Aβ(1-42) induced endoplasmic reticulum stress associated with sustained upregulation of the proapoptotic factors of the unfolded protein response and persistent photoreceptor apoptosis. Indomethacin treatment decreased inflammation and reversed the Aβ(1-42)-induced gliosis and modifications in the expression patterns of COX-2, Kir4.1, and AQP-1, but not of AQP-4 or GS. Nor did it improve edema. Our study pinpoints the adaptive response to Aβ of specific RMG cell functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare the effects of propranolol administered either by i.v. infusion or by prolonged oral administration (4 days) during the first 3 weeks following burns. The resting metabolic rate (RMR) of 10 non-infected fasting burned patients (TBSA: 28 per cent, range 18-37 per cent) was determined four times consecutively by indirect calorimetry (open circuit hood system) following: (1) i.v. physiological saline; (2) i.v. propranolol infusion (2 micrograms/kg/min following a bolus of 80 micrograms/kg); (3) oral propranolol (40 mg q.i.d. during 4 +/- 1 days); and (4) in control patients. All patients showed large increases in both RMR (144 +/- 2 per cent of reference values) and in urinary catecholamine excretion (three to four times as compared to control values). The infusion of propranolol induced a significant decrease in RMR to 135 +/- 2 per cent and oral propranolol to 129 +/- 3 per cent of reference values. A decrease in lipid oxidation but no change in carbohydrate and protein oxidation were observed during propranolol administration. It is concluded that the decrease in RMR induced by propranolol was not influenced by the route of administration. The magnitude of the decrease in energy expenditure suggests that beta-adrenergic hyperactivity represents only one of the mediators of the hypermetabolic response to burn injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SYNERCID ALONE IN A RAT MODEL OF EXPERIMENTAL ENDOCARDITIS: Trials conducted using 2 injections daily showed that animals infected with meti-R resistant Staphylococcus aureus strains sensitive to erythromycin were cured in 3 days. The same is not true for infections caused by C-MLSB-R staphylococci. The daily dose cannot be increased due to the venous toxicity of Synercid, leading to the idea of testing Synercid in combination with other antibiotics. IN VITRO STUDIES: Several antibiotics have been tested in combination with Synercid. Several beta-lactams have been shown to exhibit an additive or synergetic effect on a collection of meti-R and meti-S S. aureus strains. IN VIVO STUDIES: In animals infected with C-MLSB-R meti-R S. aureus, the combination Synercid + cefepime increases the activity of cefipime and prevents selection of beta-lactam highly resistant strains. The results obtained with the Synercid + cefpirome combination are even more eloquent. Finally, Synercid, alone or in combination with these 2 cephalosporins, does not select resistant strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human immunodeficiency virus type 1 (HIV-1) Vpu protein interacts with CD4 within the endoplasmic reticula of infected cells and targets CD4 for degradation through interaction with beta-TrCP1. Mammals possess a homologue of beta-TrCP1, HOS, which is also named beta-TrCP2. We show by coimmunoprecipitation experiments that beta-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as beta-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be reversed through the individual silencing of endogenous beta-TrCP1 or beta-TrCP2 but instead required the two genes to be silenced simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Cytomegalovirus (CMV), human herpesvirus-6 and -7 (HHV-6 and -7) are beta-herpesviruses that commonly reactivate and have been proposed to trigger acute rejection and chronic allograft injury. We assessed the contribution of these viruses in the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. METHODS: Quantitative real-time polymerase chain reaction of bronchoalveolar lavage samples were performed for CMV, HHV-6 and -7 in a prospective cohort of lung transplant recipients. A time-dependent Cox regression analysis was used to correlate the risk of BOS and acute rejection in patients with and without beta-herpesviruses infection. RESULTS: Ninety-three patients were included in the study over a period of 3 years. A total of 581 samples from bronchoalveolar lavage were obtained. Sixty-one patients (65.6%) had at least one positive result for one of the beta-herpesviruses: 48 patients (51.6%) for CMV and 19 patients (20.4%) for both HHV-6 and -7. Median peak viral load was 3419 copies/mL for CMV, 258 copies/mL for HHV-6, and 665 copies/mL for HHV-7. Acute rejection (>or=grade 2) occurred in 46.2% and BOS (>or=stage 1) in 19.4% of the patients. In the Cox regression model the relative risk of acute rejection or BOS was not increased in patients with any beta-herpesviruses reactivation. Acute rejection was the only independently associated risk factor for BOS. CONCLUSIONS: In lung transplant recipients receiving prolonged antiviral prophylaxis, reactivation of beta-herpesviruses within the allograft was common. However, despite high viral loads in many patients, virus replication was not associated with the development of rejection or BOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of fatty acids in plants occurs primarily in the peroxisomes through the beta-oxidation cycle. Enzymes that are involved in various aspects of beta-oxidation have been identified recently and shown to act biochemically on a diversity of fatty acids and derivatives. Analysis of several mutants has revealed essential roles for beta-oxidation in the breakdown of reserve triacylglycerols, seed development, seed germination and post-germinative growth before the establishment of photosynthesis. Beta-oxidation has also a considerable importance during the vegetative and reproductive growth phases, and plays a role in plant responses to stress, particularly in the synthesis of jasmonic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mature T cells comprise two mutually exclusive lineages expressing heterodimeric alpha beta or gamma delta antigen receptors. During development, beta, gamma, and delta genes rearrange before alpha, and mature gamma delta cells arise in the thymus prior to alpha beta cells. The mechanism underlying commitment of immature T cells to the alpha beta or gamma delta lineage is controversial. Since the delta locus is located within the alpha locus, rearrangement of alpha genes leads to deletion of delta. We have examined the rearrangement status of the delta locus immediately prior to alpha rearrangement. We find that many thymic precursors of alpha beta cells undergo VDJ delta rearrangements. Furthermore, the same cells frequently coexpress sterile T early alpha (TEA) transcripts originating 3' of C delta and 5' of the most upstream J alpha, thus implying that individual alpha beta lineage cells undergo sequential VDJ delta and VJ alpha rearrangements. Finally, VDJ delta rearrangements in immature alpha beta cells appear to be random, supporting models in which alpha beta lineage commitment is determined independently of the rearrangement status at the TCR delta locus.