93 resultados para 10-(Octyloxy) decyl-2-(trimethylammonium)
Resumo:
BACKGROUND: In specific conditions, photodynamic therapy (PDT) can enhance the distribution of macromolecules across the endothelial barrier in solid tumors. It was recently postulated that tumor neovessels were more responsive to PDT than the normal vasculature. We hypothesized that Visudyne(R)-mediated PDT could selectively increase liposomal doxorubicin (Liporubicin) uptake in sarcoma tumors to rodent lungs while sparing the normal surrounding tissue. MATERIALS AND METHODS: Sarcoma tumors were generated subpleurally in the left lower lung lobe of 66 Fischer rats. Ten days following sarcoma implantation, tumors underwent different pre-treatment schemes: no PDT (controls), low-dose PDT (0.0625 mg/kg Visudyne(R), 10 J/cm(2) and 35 mW/cm(2)) and high-dose PDT (0.125 mg/kg Visudyne(R), 10 J/cm(2) and 35 mW/cm(2)). Liporubicin was then administered and allowed to circulate for 1, 3, or 6 hours. At the end of each treatment scheme, we assessed the uptake of Liporubicin in tumor and lung tissues by high-performance liquid chromatography and fluorescence microscopy. RESULTS: In all PDT-treated groups, there was a significant enhancement of Liporubicin uptake in tumors compared to controls after 3 and 6 hours of drug circulation. In addition, Liporubicin distribution within the normal lung tissue was not affected by PDT. Thus, PDT pre-treatment significantly enhanced the ratio of tumor-to-lung drug uptake compared to controls. Finally, fluorescence microscopy revealed a well-detectable Liporubicin signaling throughout PDT-treated tumors but not in controls. CONCLUSIONS: PDT is a tumor-specific enhancer of Liporubicin distribution in sarcoma lung tumors which may find a translation in clinics.
Resumo:
BACKGROUND: Patients with BM rarely survive .6 months and are commonly excluded from clinical trials. We aimed at improving outcome by exploring 2 combined modality regimens with at the time novel agents for which single-agent activity had been shown. METHODS: NSCLC patients with multiple BM were randomized to WBRT (10 × 3 Gy) and either GFT 250 mg p.o. daily or TMZ 75 mg/m2 p.o. daily ×21/28 days, starting on Day 1 of RT and to be continued until PD. Primary endpoint was overall survival, a Simon's optimal 2-stage design was based on assumptions for the 3-month survival rate. Cognitive functioning and quality of life were also evaluated. RESULTS: Fifty-nine patients (36 M, 23 F; 9 after prior chemo) were included. Median age was 61 years (range 46-82), WHO PS was 0 in 18 patients, 1 in 31 patients, and 2 in 10 patients. All but 1 patients had extracranial disease; 33 of 43 (TMZ) and 15 of 16 (GFT) had adenocarcinoma histology. GFT arm was closed early after stage 1 analysis when the prespecified 3-mo survival rate threshold (66%) was not reached, causes of death were not GFT related. Main causes of death were PD in the CNS 24%, systemic 41%, both 8%, and toxicity 10% [intestinal perforation (2 patients), pneumonia (2), pulmonary emboli (1), pneumonitis NOS (1), seizure (1)]. We summarize here other patients' characteristics for the 2 trial arms: TMZ (n ¼ 43)/GFT (n ¼ 16); median treatment duration: 1.6 /1.8 mo; Grade 3-4 toxicity: lymphopenia 5 patients (12%)/0; fatigue 8 patients (19%)/2 patients (13%). Survival data for TMZ/GFT arms: 3-month survival rate: 58.1% (95% CI 42.1-73)/62.5% (95% CI 35- 85); median OS: 4.9 months (95% CI 2.5-5.6)/6.3 months (95% CI 2.2- 14.6); median PFS: 1.8 months (95% CI 1.5-1.8)/1.8 (95% CI 1.1-3.9); median time to neurol. progr.: 8.0 months (95% CI 2.2-X)/4.8 (95% CI 3.9-10.5). In a model to predict survival time including the variables' age, PS, number of BM, global QL, total MMSE score, and subjective cognitive function, none of the variables accounted for a significant improvement in survival time. CONCLUSIONS: The combinations of WBRT with GFT or TMZ were feasible. However, in this unselected patient population, survival remains poor and a high rate of complication was observed. Four patients died as a result of high-dose corticosteroids. Preliminary evaluation of cognitive function andQL failed to show significant improvement. Indications and patient selection for palliative treatment should be revisited and careful monitoring and supportive care is required. Research and progress for this frequent clinical situation is urgently needed. Trial partly supported by AstraZeneca (Switzerland), Essex Chemie (Switzerland) and Swiss Federal Government.
Resumo:
BACKGROUND: Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors involved in genetic control of many cellular processes. PPAR and PPAR have been implicated in colonic malignancy. Here we provide three lines of evidence suggesting an inhibitory role for PPAR in colorectal cancer development. METHODS: Levels of PPAR mRNA and protein in human colorectal cancers were compared with matched non-malignant mucosa using RNAse protection and western blotting. APC(Min)/+ mice were randomised to receive the PPAR activator methylclofenapate 25 mg/kg or vehicle for up to 16 weeks, and small and large intestinal polyps were quantified by image analysis. The effect of methylclofenapate on serum stimulated mitogenesis (thymidine incorporation), linear cell growth, and annexin V and propidium iodide staining were assessed in human colonic epithelial cells. RESULTS: PPAR (mRNA and protein) expression levels were significantly depressed in colorectal cancer compared with matched non-malignant tissue. Methylclofenapate reduced polyp area in the small intestine from 18.7 mm(2) (median (interquartile range 11.1, 26.8)) to 9.90 (4.88, 13.21) mm(2) (p=0.003) and in the colon from 9.15 (6.31, 10.5) mm(2) to 3.71 (2.71, 5.99) mm(2) (p=0.009). Methylclofenapate significantly reduced thymidine incorporation and linear cell growth with no effect on annexin V or propidium iodide staining. CONCLUSIONS: PPAR may inhibit colorectal tumour progression, possibly via inhibition of proliferation, and may be an important therapeutic target.
Resumo:
Follicular Th (T(FH)) cells have emerged as a new Th subset providing help to B cells and supporting their differentiation into long-lived plasma cells or memory B cells. Their differentiation had not yet been investigated following neonatal immunization, which elicits delayed and limited germinal center (GC) responses. We demonstrate that neonatal immunization induces CXCR5(high)PD-1(high) CD4(+) T(FH) cells that exhibit T(FH) features (including Batf, Bcl6, c-Maf, ICOS, and IL-21 expression) and are able to migrate into the GCs. However, neonatal T(FH) cells fail to expand and to acquire a full-blown GC T(FH) phenotype, as reflected by a higher ratio of GC T(FH)/non-GC CD4(+) T cells in immunized adults than neonates (3.8 × 10(-3) versus 2.2 × 10(-3), p = 0.01). Following the adoptive transfer of naive adult OT-II CD4(+) T cells, OT-II T(FH) cells expand in the vaccine-draining lymph nodes of immunized adult but not infant recipients, whereas naive 2-wk-old CD4(+) OT-II cells failed to expand in adult hosts, reflecting the influence of both environmental and T cell-intrinsic factors. Postponing immunization to later in life increases the number of T(FH) cells in a stepwise manner, in direct correlation with the numbers of GC B cells and plasma cells elicited. Remarkably, adjuvantation with CpG oligonucleotides markedly increased GC T(FH) and GC B cell neonatal responses, up to adult levels. To our knowledge, this is the first demonstration that the T(FH) cell development limits early life GC responses and that adjuvants/delivery systems supporting T(FH) differentiation may restore adultlike early life GC B cell responses.
Resumo:
Combining bacterial bioreporters with microfluidics systems holds great promise for in-field detection of chemical or toxicity targets. Recently we showed how Escherichia coli cells engineered to produce a variant of green fluorescent protein after contact to arsenite and arsenate can be encapsulated in agarose beads and incorporated into a microfluidic chip to create a device for in-field detection of arsenic, a contaminant of well known toxicity and carcinogenicity in potable water both in industrialized and developing countries. Cell-beads stored in the microfluidics chip at -20°C retained inducibility up to one month and we were able to reproducibly discriminate concentrations of 10 and 50 μg arsenite per L (the drinking water standards for European countries and the United States, and for the developing countries, respectively) from the blank in less than 200 minutes. We discuss here the reasons for decreasing bioreporter signal development upon increased storage of cell beads but also show how this decrease can be reduced, leading to a faster detection and a longer lifetime of the device.
Resumo:
The major challenge in transplantation medicine remains long-term allograft acceptance, with preserved allograft function under minimal chronic immunosuppression. To safely achieve the goal of sustained donor-specific T and B cell non-responsiveness, research efforts are now focusing on therapies based on cell subsets with regulatory properties. In particular the transfusion of human regulatory T cells (Treg) is currently being evaluated in phase I/II clinical trials for the treatment of graft versus host disease following hematopoietic stem cell transplantation, and is also under consideration for solid organ transplantation. The purpose of this review is to recapitulate current knowledge on naturally occurring as well as induced human Treg, with emphasis on their specific phenotype, suppressive function and how these cells can be manipulated in vitro and/or in vivo for therapeutic purposes in transplantation medicine. We highlight the potential but also possible limitations of Treg-based strategies to promote long-term allograft survival. It is evident that the bench-to-beside translation of these protocols still requires further understanding of Treg biology. Nevertheless, current data already suggest that Treg therapy alone will not be sufficient and needs to be combined with other immunomodulatory approaches in order to induce allograft tolerance.
Resumo:
PURPOSE: To determine whether a mono-, bi- or tri-exponential model best fits the intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) signal of normal livers. MATERIALS AND METHODS: The pilot and validation studies were conducted in 38 and 36 patients with normal livers, respectively. The DWI sequence was performed using single-shot echoplanar imaging with 11 (pilot study) and 16 (validation study) b values. In each study, data from all patients were used to model the IVIM signal of normal liver. Diffusion coefficients (Di ± standard deviations) and their fractions (fi ± standard deviations) were determined from each model. The models were compared using the extra sum-of-squares test and information criteria. RESULTS: The tri-exponential model provided a better fit than both the bi- and mono-exponential models. The tri-exponential IVIM model determined three diffusion compartments: a slow (D1 = 1.35 ± 0.03 × 10(-3) mm(2)/s; f1 = 72.7 ± 0.9 %), a fast (D2 = 26.50 ± 2.49 × 10(-3) mm(2)/s; f2 = 13.7 ± 0.6 %) and a very fast (D3 = 404.00 ± 43.7 × 10(-3) mm(2)/s; f3 = 13.5 ± 0.8 %) diffusion compartment [results from the validation study]. The very fast compartment contributed to the IVIM signal only for b values ≤15 s/mm(2) CONCLUSION: The tri-exponential model provided the best fit for IVIM signal decay in the liver over the 0-800 s/mm(2) range. In IVIM analysis of normal liver, a third very fast (pseudo)diffusion component might be relevant. KEY POINTS: ? For normal liver, tri-exponential IVIM model might be superior to bi-exponential ? A very fast compartment (D = 404.00 ± 43.7 × 10 (-3) mm (2) /s; f = 13.5 ± 0.8 %) is determined from the tri-exponential model ? The compartment contributes to the IVIM signal only for b ≤ 15 s/mm (2.)
Resumo:
1. This account presents information on all aspects of the biology of Ambrosia artemisiifolia L. (Common ragweed) that are relevant to understanding its ecology. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history, and conservation, impacts and management. 2. Ambrosia artemisiifolia is a monoecious, wind-pollinated, annual herb native to North America whose height varies from 10 cm to 2.5 m according to environmental conditions. It has erect, branched stems and pinnately lobed leaves. Spike-like racemes of male capitula composed of staminate (male) florets terminate the stems, while cyme-like clusters of pistillate (female) florets are arranged in groups the axils of main and lateral stem leaves. 3. Seeds require prolonged chilling to break dormancy. Following seedling emergence in spring, the rate of vegetative growth depends on temperature, but development occurs over a wide thermal range. In temperate European climates, male and female flowers are produced from summer to early autumn (July to October). 4. Ambrosia artemisiifolia is sensitive to freezing. Late spring frosts kill seedlings and the first autumn frosts terminate the growing season. It has a preference for dry soils of intermediate to rich nutrient level. 5. Ambrosia artemisiifolia was introduced into Europe with seed imports from North America in the 19th century. Since World War II, it has become widespread in temperate regions of Europe and is now abundant in open, disturbed habitats as a ruderal and agricultural weed. 6. Recently, the N. American ragweed leaf beetle (Ophraella communa) has been detected in southern Switzerland and northern Italy. This species appears to have the capacity to substantially reduce growth and seed production of A. artemisiifolia. 7. In heavily infested regions of Europe, A. artemisiifolia causes substantial crop-yield losses and its copious, highly allergenic pollen creates considerable public health problems. There is consensus among models that climate change will allow its northward and up-hill spread in Europe.
Resumo:
PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae. DESIGN: Retrospective nonconsecutive observational case series. METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein. RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons. CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells.
Resumo:
PURPOSE: To investigate the functional outcome of eyes with neovascular AMD (nAMD) and subretinal fluid (SRF) refractory to treatment with ranibizumab. METHODS: Retrospective chart review of consecutive treatment-refractory SRF in nAMD despite monthly ranibizumab injections during 12 months or more. Data were evaluated for baseline characteristics, location of the refractory SRF, mean visual acuity (VA) change, number of injections, and timepoint of first complete disappearance of SRF. RESULTS: Forty-five eyes in 44 patients (mean age of 76 years) were included. The mean follow-up was 32.4 months (range 12-73 months). The mean number of injections was 11.6 in the first year and 27.5 over follow-up. The refractory SRF was located subfoveally in 66.7 %. In 12 eyes (26.7 %), complete absorption of SRF was found after a mean of 22.6 months (range, 13-41 months). Mean VA increased by 10.4, 8.2, and 8.6 letters by month 12, 24, and 36, respectively. CONCLUSIONS: Neovascular AMD with SRF refractory to monthly retreatment with ranibizumab may still allow good and maintained visual improvement, even if the fluid is located subfoveally. SRF may progressively absorb under continuous monthly treatment. The necessity to treat refractory SRF with monthly injections could be questioned and would need future investigations.
Resumo:
La simulation sous ses différentes formes est devenue un outil incontournable dans la formation des professionnels de la santé. Il n'en demeure pas moins que la simulation intervient dans un environnement complexe où le comportement humain est une variable essentielle. Dans ce contexte, la recherche en simulation est indispensable : elle doit produire des connaissances qui nous permettent de mieux comprendre l'apprentissage par la simulation. Pour atteindre cet objectif, la recherche en simulation doit être aussi rigoureuse que toute recherche clinique, afin qu'elle puisse produire des connaissances de qualité. De par la complexité de l'environnement simulé, la recherche dans ce domaine est riche et recourt à des méthodes variées issues des sciences du comportement, de l'éducation et plus largement des sciences sociales.
Resumo:
Intravoxel incoherent motion (IVIM) MRI is a method to extract microvascular blood flow information out of diffusion-weighted images acquired at multiple b-values. We hypothesized that IVIM can identify the muscles selectively involved in a specific task, by measuring changes in activity-induced local muscular perfusion after exercise. We tested this hypothesis using a widely used clinical maneuver, the lift-off test, which is known to assess specifically the subscapularis muscle functional integrity. Twelve shoulders from six healthy male volunteers were imaged at 3 T, at rest, as well as after a lift-off test hold against resistance for 30 s, 1 and 2 min respectively, in three independent sessions. IVIM parameters, consisting of perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient D* and blood flow-related fD*, were estimated within outlined muscles of the rotator cuff and the deltoid bundles. The mean values at rest and after the lift-off tests were compared in each muscle using a one-way ANOVA. A statistically significant increase in fD* was measured in the subscapularis, after a lift-off test of any duration, as well as in D. A fD* increase was the most marked (30 s, +103%; 1 min, +130%; 2 min, +156%) and was gradual with the duration of the test (in 10(-3) mm(2) /s: rest, 1.41 ± 0.50; 30 s, 2.86 ± 1.17; 1 min, 3.23 ± 1.22; 2 min, 3.60 ± 1.21). A significant increase in fD* and D was also visible in the posterior bundle of the deltoid. No significant change was consistently visible in the other investigated muscles of the rotator cuff and the other bundles of the deltoid. In conclusion, IVIM fD* allows the demonstration of a task-related microvascular perfusion increase after a specific task and suggests a direct relationship between microvascular perfusion and the duration of the effort. It is a promising method to investigate non-invasively skeletal muscle physiology and clinical perfusion-related muscular disorders.