109 resultados para water ski lift
Resumo:
Drought limits plant growth and threatens crop productivity. A barley (Hordeum vulgare) ethylene imine-induced monogenic recessive mutant cer-zv, which is sensitive to drought, was characterized and genetically mapped in the present study. Detached leaves of cer-zv lost 34.2 % of their initial weight after 1 h of dehydration. The transpiration was much higher in cer-zv leaves than in wild-type leaves under both light and dark conditions. The stomata of cer-zv leaves functioned normally, but the cuticle of cer-zv leaves showed increased permeability to ethanol and toluidine blue dye. There was a 50-90 % reduction in four major cutin monomers, but no reduction in wax loads was found in the cer-zv mutant as compared with the wild type. Two F(2) mapping populations were established by the crosses of 23-19 × cer-zv and cer-zv × OUH602. More polymorphisms were found in EST sequences between cer-zv and OUH602 than between cer-zv and 23-19. cer-zv was located in a pericentromeric region on chromosome 4H in a 10.8 cM interval in the 23-19 × cer-zv map based on 186 gametes tested and a 1.7 cM interval in the cer-zv × OUH602 map based on 176 gametes tested. It co-segregated with EST marker AK251484 in both maps. The results indicated that the cer-zv mutant is defective in cutin, which might be responsible for the increased transpiration rate and drought sensitivity, and that the F(2) of cer-zv × OUH602 might better facilitate high resolution mapping of cer-zv.
Resumo:
The aim of our survey was to assess the effect of irrigation water of the microbiological quality on the production chain of lettuce in the Dakar area. Microbiological analysis showed that 35% of irrigation water was contaminated by Salmonella spp. between the two water-types used for irrigation (groundwater and wastewater), no significant difference (p>0.05) in their degree of contamination was found. The incidence of different types of irrigation water on the contamination rate of lettuces from the farm (Pikine and Patte d'Oie) was not different either (p>0.05). However, the contamination rate of lettuce from markets of Dalifort and Grand-Yoff that were supplied by the area of Patte d'Oie was greater than those of Sham and Zinc supplied by Pikine (p<0.05). Comparison of serotypes of Salmonella isolated from irrigation water and lettuce showed that irrigation water may affect the microbiological quality of lettuce. Manures, frequently used as organic amendment in cultivating lettuce are another potential source of contamination. These results showed that lettuce may constitute effective vectors for the transmission of pathogens to consumers. Extensive treatment of the used wastewater and/or composting of manure could considerably reduce these risks.
Resumo:
The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic "signature residue" at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket.
Resumo:
The n-octanol/water partition coefficient (log Po/w) is a key physicochemical parameter for drug discovery, design, and development. Here, we present a physics-based approach that shows a strong linear correlation between the computed solvation free energy in implicit solvents and the experimental log Po/w on a cleansed data set of more than 17,500 molecules. After internal validation by five-fold cross-validation and data randomization, the predictive power of the most interesting multiple linear model, based on two GB/SA parameters solely, was tested on two different external sets of molecules. On the Martel druglike test set, the predictive power of the best model (N = 706, r = 0.64, MAE = 1.18, and RMSE = 1.40) is similar to six well-established empirical methods. On the 17-drug test set, our model outperformed all compared empirical methodologies (N = 17, r = 0.94, MAE = 0.38, and RMSE = 0.52). The physical basis of our original GB/SA approach together with its predictive capacity, computational efficiency (1 to 2 s per molecule), and tridimensional molecular graphics capability lay the foundations for a promising predictor, the implicit log P method (iLOGP), to complement the portfolio of drug design tools developed and provided by the SIB Swiss Institute of Bioinformatics.
Resumo:
Chlamydia-related bacteria classified in the Chlamydiales order, are strictly intracellular bacteria and are able for the most to replicate in free-living amoebae. Amoebae, ubiquitous in the environment and especially in water, are very resistant to disinfection used in drinking water production. Thus, amoebae may reach easily the distribution and domestic water system, potentially sheltering amoeba-resisting bacteria including Legionella, mycobacteria and Chlamydiales. Indeed, some of these amoeba-resisting bacteria have been shown to cause respiratory infections in people inhaling contaminated water. Therefore, an environmental and clinical study was conducted to determine if Chlamydiales bacteria are also involved in respiratory infections and if a transmission through domestic drinking water could occur. First, large scale molecular and serological tools specific of Chlamydia-related bacteria were developed and then were applied on clinical samples from patients with and without pneumonia. Simultaneously, water and biofilm samples from households of the same patients were investigated using molecular and culture methods for the presence of Chlamydiales bacteria. Chlamydiales were detected in the nasopharyngeal flora from patients with and without pneumonia. However, no significant difference was observed between both groups. Conversely, serological investigations showed that antibody reactivity against members of the Criblamydiaceae was associated with pneumonia. The thesis provided very efficient tools that showed the presence of Chlamydiales in human nasopharyngeal flora as well as in the majority of the domestic drinking water. However, no transmission from domestic drinking water to human could be demonstrated. These tools will help in the future specifying the ecology and pathogenicity of the Chlamydia-re\ated bacteria and especially of the species belonging to the Criblamydiaceae family.
Resumo:
Animals and plants are associated with symbiotic microbes whose roles range from mutualism to commensalism to parasitism. These roles may not only be taxon-specific but also dependent on environmental conditions and host factors. To experimentally test these possibilities, we drew a random sample of adult whitefish from a natural population, bred them in vitro in a full-factorial design in order to separate additive genetic from maternal environmental effects on offspring, and tested the performance of the resulting embryos under different environmental conditions. Enhancing the growth of symbiotic microbes with supplemental nutrients released cryptic additive genetic variance for viability in the fish host. These effects vanished with the concurrent addition of the water mould Saprolegnia ferax. Our findings demonstrate that the heritability of host fitness is environment-specific and critically depends on the interaction between symbiotic microbes.
Resumo:
Hypernatremia is defined as a serum sodium concentration above the upper laboratory reference range, usually > 145 mmol/l. It is a common electrolyte disorder in the very young and the very old patient. Hospitalization itself is a risk factor for developing hypernatremia. Free water deficit is the main cause of this condition. It induces hyperosmolality and an intracellular dehydration. Clinical manifestations are mostly neurological but non-specific. A blood sample analysis is needed to establish the diagnosis. Hypernatremia is associated with a high mortality and morbidity. Treatment consists of correcting the underlying cause and the volume deficit. A brief review of this condition is proposed.
Resumo:
PURPOSE: To investigate the utility of inversion recovery with ON-resonant water suppression (IRON) to create positive signal in normal lymph nodes after injection of superparamagnetic nanoparticles. MATERIALS AND METHODS: Experiments were conducted on six rabbits, which received a single bolus injection of 80 mumol Fe/kg monocrystalline iron oxide nanoparticle (MION-47). Magnetic resonance imaging (MRI) was performed at baseline, 1 day, and 3 days after MION-47 injection using conventional T(1)- and T(2)*-weighted sequences and IRON. Contrast-to-noise ratios (CNR) were measured in blood and in paraaortic lymph nodes. RESULTS: On T(2)*-weighted images, as expected, signal attenuation was observed in areas of paraaortic lymph nodes after MION-47 injection. However, using IRON the paraaortic lymph nodes exhibited very high contrast enhancement, which remained 3 days after injection. CNR with IRON was 2.2 +/- 0.8 at baseline, increased markedly 1 day after injection (23.5 +/- 5.4, P < 0.01 vs. baseline), and remained high after 3 days (21.8 +/- 5.7, *P < 0.01 vs. baseline). CNR was also high in blood 1 day after injection (42.7 +/- 7.2 vs. 1.8 +/- 0.7 at baseline, P < 0.01) but approached baseline after 3 days (1.9 +/- 1.4, P = NS vs. baseline). CONCLUSION: IRON in conjunction with superparamagnetic nanoparticles can be used to perform 'positive contrast' MR-lymphography, particularly 3 days after injection of the contrast agent, when signal is no longer visible within blood vessels. The proposed method may have potential as an adjunct for nodal staging in cancer screening.
Resumo:
Three-dimensional analysis of the entire sequence in ski jumping is recommended when studying the kinematics or evaluating performance. Camera-based systems which allow three-dimensional kinematics measurement are complex to set-up and require extensive post-processing, usually limiting ski jumping analyses to small numbers of jumps. In this study, a simple method using a wearable inertial sensors-based system is described to measure the orientation of the lower-body segments (sacrum, thighs, shanks) and skis during the entire jump sequence. This new method combines the fusion of inertial signals and biomechanical constraints of ski jumping. Its performance was evaluated in terms of validity and sensitivity to different performances based on 22 athletes monitored during daily training. The validity of the method was assessed by comparing the inclination of the ski and the slope at landing point and reported an error of -0.2±4.8°. The validity was also assessed by comparison of characteristic angles obtained with the proposed system and reference values in the literature; the differences were smaller than 6° for 75% of the angles and smaller than 15° for 90% of the angles. The sensitivity to different performances was evaluated by comparing the angles between two groups of athletes with different jump lengths and by assessing the association between angles and jump lengths. The differences of technique observed between athletes and the associations with jumps length agreed with the literature. In conclusion, these results suggest that this system is a promising tool for a generalization of three-dimensional kinematics analysis in ski jumping.
Resumo:
Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.
Resumo:
PURPOSE: To investigate the ability of inversion recovery ON-resonant water suppression (IRON) in conjunction with P904 (superparamagnetic nanoparticles which consisting of a maghemite core coated with a low-molecular-weight amino-alcohol derivative of glucose) to perform steady-state equilibrium phase MR angiography (MRA) over a wide dose range. MATERIALS AND METHODS: Experiments were approved by the institutional animal care committee. Rabbits (n = 12) were imaged at baseline and serially after the administration of 10 incremental dosages of 0.57-5.7 mgFe/Kg P904. Conventional T1-weighted and IRON MRA were obtained on a clinical 1.5 Tesla (T) scanner to image the thoracic and abdominal aorta, and peripheral vessels. Contrast-to-noise ratios (CNR) and vessel sharpness were quantified. RESULTS: Using IRON MRA, CNR and vessel sharpness progressively increased with incremental dosages of the contrast agent P904, exhibiting constantly higher contrast values than T1 -weighted MRA over a very wide range of contrast agent doses (CNR of 18.8 ± 5.6 for IRON versus 11.1 ± 2.8 for T1 -weighted MRA at 1.71 mgFe/kg, P = 0.02 and 19.8 ± 5.9 for IRON versus -0.8 ± 1.4 for T1-weighted MRA at 3.99 mgFe/kg, P = 0.0002). Similar results were obtained for vessel sharpness in peripheral vessels, (Vessel sharpness of 46.76 ± 6.48% for IRON versus 33.20 ± 3.53% for T1-weighted MRA at 1.71 mgFe/Kg, P = 0.002, and of 48.66 ± 5.50% for IRON versus 19.00 ± 7.41% for T1-weighted MRA at 3.99 mgFe/Kg, P = 0.003). CONCLUSION: Our study suggests that quantitative CNR and vessel sharpness after the injection of P904 are consistently higher for IRON MRA when compared with conventional T1-weighted MRA. These findings apply for a wide range of contrast agent dosages.
Resumo:
OBJECTIVE: To evaluate the relationship between changes in body bioelectrical impedance (BI) at 0.5, 50 and kHz and the changes in body weight, as an index of total body water changes, in acutely ill surgical patients during the rapid infusion of isotonic saline solution. DESIGN: Prospective clinical study. SETTING: Multidisciplinary surgical ICU in a university hospital. PATIENTS: Twelve male patients treated for acute surgical illness (multiple trauma n = 5, major surgery n = 7). Selection criteria: stable cardiovascular parameters, normal cardiac function, signs of hypovolemia (CVP < or = 5 mmHg, urine output < 1 ml/kg x h). INTERVENTIONS: After baseline measurements, a 60 min fluid challenge test was performed with normal saline solution, 0.25 ml/kg/min [corrected]. MEASUREMENTS AND RESULTS: Body weight (platform digital scale), total body impedance (four-surface electrode technique; measurements at 0.5, 50 and 100 kHz) and urine output. Fluid retention induced a progressive decrease in BI at 0.5, 50 and 100 kHz, but the changes were significant for BI 0.5 and BI 100 only, from 40 min after the beginning of the fluid therapy onwards. There was a significant negative correlation between changes in water retention and BI 0.5, with individual correlation coefficients ranging from -0.72 to 0.95 (p < 0.01-0.0001). The slopes of the regression lines indicated that for each kg of water change, there was a mean decrease in BI of 18 ohm, but a substantial inter-individual variability was noted. CONCLUSION: BI measured at low frequency can represent a valuable index of acute changes in body water in a group of surgical patients but not in a given individual.
Resumo:
A set of bottled waters from a single natural spring distributed worldwide in polyethylene terephthalate (PET) bottles has been used to examine the effects of storage in plastic polymer material on the isotopic composition (delta(18)O and delta(2)H values) of the water. All samples analyzed were subjected to the same packaging procedure but experienced different conditions of temperature and humidity during storage. Water sorption and the diffusive transfer of water and water vapor through the wall of the PET bottle may cause isotopic exchange between water within the bottle and water vapor in air near the PET-water interface. Changes of about +4 parts per thousand for delta(2)H and +0.7 parts per thousand for delta(18)O have been measured for water after 253 days of storage within the PET bottle. The results of this study clearly indicate the need to use glass bottles for storing water samples for isotopic studies. It is imperative to transfer PET-bottled natural waters to glass bottles for their use as calibration material or potential international working standards. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Contribution of visual and nonvisual mechanisms to spatial behavior of rats in the Morris water maze was studied with a computerized infrared tracking system, which switched off the room lights when the subject entered the inner circular area of the pool with an escape platform. Naive rats trained under light-dark conditions (L-D) found the escape platform more slowly than rats trained in permanent light (L). After group members were swapped, the L-pretrained rats found under L-D conditions the same target faster and eventually approached latencies attained during L navigation. Performance of L-D-trained rats deteriorated in permanent darkness (D) but improved with continued D training. Thus L-D navigation improves gradually by procedural learning (extrapolation of the start-target azimuth into the zero-visibility zone) but remains impaired by lack of immediate visual feedback rather than by absence of the snapshot memory of the target view.
Resumo:
Background: Chronic mountain sickness (CMS) is characterized by exaggerated exercise-induced pulmonary hypertension. Evidences suggests that exercise may cause lung fluid accumulation at high altitude. We hypothesized that, in patients with CMS, exercise causes lung fluid accumulation.Methods: In 21 male CMS patients and 20 matched healthy controls born and permanently living in La Paz (Bolivia, 3600m) we assessed with echocardiogram, pulmonary artery pressure (PASP), right and left ventricular function and ultrasoundlung comets (ULCs, a marker of lung fluid accumulation) at rest and during mild bicycle exercise (10 min at 50W).Results: CMS patients presented a more than 2-fold greater exercise-induced increase in pulmonary artery pressure than controls (17.1±8.3 vs 7.2±7.9 mmHg, P=0.003). This exaggerated PASP response to exercise was associated with a roughly 3-fold greater increase in UCLs in patients with CMS than in controls (6.3±5.1 vs. 2.1±5.3, p<0.05), and there existed a significant relationship between PASP and UCLs (r=0.44, p<0.001). Finally, TDI on lateral tricuspid annulus decreased during exercise in patients with CMS (from 13.2±3.2 to 11.5±2.1 cm s-1, p=0.03), but increased in controls (from 13.1±2.9 to 14.9±2.6 cm s-1 , p=0.04). Left ventricular function remained unaltered in the 2 groups.Conclusions: we provide the first direct evidence in CMS patients that exaggerated exercise-induced pulmonary hypertension causes rapid lung fluid accumulation and right ventricular dysfunction. We speculate that in patients with CMS these two phenomena contribute to reduced exercise performances and Figure 1 increased cardiovascular morbidity and mortality that characterise these subjects.