146 resultados para viral entry
Resumo:
Epidemiological processes leave a fingerprint in the pattern of genetic structure of virus populations. Here, we provide a new method to infer epidemiological parameters directly from viral sequence data. The method is based on phylogenetic analysis using a birth-death model (BDM) rather than the commonly used coalescent as the model for the epidemiological transmission of the pathogen. Using the BDM has the advantage that transmission and death rates are estimated independently and therefore enables for the first time the estimation of the basic reproductive number of the pathogen using only sequence data, without further assumptions like the average duration of infection. We apply the method to genetic data of the HIV-1 epidemic in Switzerland.
Resumo:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin (Htt) gene. Despite intensive efforts devoted to investigating the mechanisms of its pathogenesis, effective treatments for this devastating disease remain unavailable. The lack of suitable models recapitulating the entire spectrum of the degenerative process has severely hindered the identification and validation of therapeutic strategies. The discovery that the degeneration in HD is caused by a mutation in a single gene has offered new opportunities to develop experimental models of HD, ranging from in vitro models to transgenic primates. However, recent advances in viral-vector technology provide promising alternatives based on the direct transfer of genes to selected sub-regions of the brain. Rodent studies have shown that overexpression of mutant human Htt in the striatum using adeno-associated virus or lentivirus vectors induces progressive neurodegeneration, which resembles that seen in HD. This article highlights progress made in modeling HD using viral vector gene transfer. We describe data obtained with of this highly flexible approach for the targeted overexpression of a disease-causing gene. The ability to deliver mutant Htt to specific tissues has opened pathological processes to experimental analysis and allowed targeted therapeutic development in rodent and primate pre-clinical models.
Resumo:
Mouse mammary tumor virus (MMTV[SW]) encodes a superantigen expressed by infected B cells. It evokes an antibody response specific for viral envelope protein, indicating selective activation of antigen-specific B cells. The response to MMTV(SW) in draining lymph nodes was compared with the response to haptenated chicken gamma globulin (NP-CGG) using flow cytometry and immunohistology. T cell priming occurs in both responses, with T cells proliferating in association with interdigitating dendritic cells in the T zone. T cell proliferation continues in the presence of B cells in the outer T zone, and B blasts then undergo exponential growth and differentiation into plasma cells in the medullary cords. Germinal centers develop in both responses, but those induced by MMTV(SW) appear later and are smaller. Most T cells activated in the T zone and germinal centers in the MMTV(SW) response are superantigen specific and these persist for weeks in lymph nodes draining the site MMTV(SW) injection: this contrasts with the selective loss of superantigen-specific T cells from other secondary lymphoid tissues. The results indicate that this viral superantigen, when expressed by professional antigen-presenting cells, drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production.
Resumo:
Suspicion of viral encephalitis should always be considered as a medical emergency and the prognosis depend on both the immune status of the host and the virulence of the virus. Among them, the herpes simplex virus is by far the most important one since it can be associated with severe encephalitis in immunocompetent host, and because a good response to acyclovir can be expected when rapidly initiated. Nevertheless, confirmation of the diagnosis requires exclusion of both metabolic or toxic encephalopathy and inflammatory encephalitis of non-infectious origin. In addition, other germs than viruses can mimic viral encephalitis and must be taken into consideration. The purpose of this review is to update the investigation that should be performed in clinical practice for any patient with suspicion of acute viral encephalitis.
Resumo:
Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion.
Resumo:
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of immunity against pathogens. However, HIV-1 spread is strongly enhanced in clusters of DCs and CD4(+) T cells. Uninfected DCs capture HIV-1 and mediate viral transfer to bystander CD4(+) T cells through a process termed trans-infection. Initial studies identified the C-type lectin DC-SIGN as the HIV-1 binding factor on DCs, which interacts with the viral envelope glycoproteins. Upon DC maturation, however, DC-SIGN is down-regulated, while HIV-1 capture and trans-infection is strongly enhanced via a glycoprotein-independent capture pathway that recognizes sialyllactose-containing membrane gangliosides. Here we show that the sialic acid-binding Ig-like lectin 1 (Siglec-1, CD169), which is highly expressed on mature DCs, specifically binds HIV-1 and vesicles carrying sialyllactose. Furthermore, Siglec-1 is essential for trans-infection by mature DCs. These findings identify Siglec-1 as a key factor for HIV-1 spread via infectious DC/T-cell synapses, highlighting a novel mechanism that mediates HIV-1 dissemination in activated tissues.
Resumo:
Oligogalacturonides are structural and regulatory homopolymers from the extracellular pectic matrix of plants. In vitro micromolar concentrations of oligogalacturonates and polygalacturonates were shown previously to stimulate the phosphorylation of a small plasma membrane-associated protein in potato. Immunologically cross-reactive proteins were detected in plasma membrane-enriched fractions from all angiosperm subclasses in the Cronquist system. Polygalacturonate-enhanced phosphorylation of the protein was observed in four of the six dicotyledon subclasses but not in any of the five monocotyledon subclasses. A cDNA for the protein was cloned from potato. The deduced protein is extremely hydrophilic and has a proline-rich N terminus. The C-terminal half of the protein was predicted to be a coiled coil, suggesting that the protein interacts with other macromolecules. The recombinant protein was found to bind both simple and complex galacturonides. The behavior of the protein suggests several parallels with viral proteins involved in intercellular communication.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) isolates from 20 chronically infected patients who participated in a structured treatment interruption (STI) trial were studied to determine whether viral fitness influences reestablishment of viremia. Viruses derived from individuals who spontaneously controlled viremia had significantly lower in vitro replication capacities than viruses derived from individuals that did not control viremia after interruption of antiretroviral therapy (ART), and replication capacities correlated with pre-ART and post-STI viral set points. Of note, no clinically relevant improvement of viral loads upon STI occurred. Virus isolates from controlling and noncontrolling patients were indistinguishable in terms of coreceptor usage, genetic subtype, and sensitivity to neutralizing antibodies. In contrast, viruses from controlling patients exhibited increased sensitivity to inhibition by chemokines. Sensitivity to inhibition by RANTES correlated strongly with slower replication kinetics of the virus isolates, suggesting a marked dependency of these virus isolates on high coreceptor densities on the target cells. In summary, our data indicate that viral fitness is a driving factor in determining the magnitude of viral rebound and viral set point in chronic HIV-1 infection, and thus fitness should be considered as a parameter influencing the outcome of therapeutic intervention in chronic infection.
Resumo:
Carbohydrate-deficient transferrin, a transferrin isoform, is hailed as a new marker of chronic alcohol abuse, but its specificity is, however, not unequivocally accepted. The aim of the present study was therefore to determine carbohydrate-deficient transferrin levels in patients with chronic hepatitis B and C with or without documented chronic alcohol intake. Carbohydrate-deficient transferrin was measured using a double-antibody radioimmunoassay (CDTect, Pharmacia) in serum samples from 66 patients (45 males and 21 females; mean age: 39 years) with chronic viral hepatitis B (n = 20) or C (n = 46). Diagnosis of the underlying liver disease was established by liver biopsy. Carbohydrate-deficient transferrin levels were raised in 15 patients [23%; hepatitis B (n = 2) and hepatitis C (n = 13)]. In patients with chronic hepatitis B, the carbohydrate-deficient transferrin level was raised in two abstainers. In the 46 patients with chronic hepatitis C, 10 (22%) patients with an alcohol consumption of < 60 g/day for the men and 30 g/day for the women had raised carbohydrate-deficient transferrin levels. The overall specificity of carbohydrate-deficient transferrin for chronic alcohol abuse was thus 78%, suggesting an association between elevated carbohydrate-deficient transferrin levels and the presence of chronic viral hepatitis. Carbohydrate-deficient transferrin levels were not correlated with the histological grading or staging of chronic hepatitis B and C, or with biological markers of hepatic synthesis and cellular damage. Thus, an increased carbohydrate-deficient transferrin level may occur in patients with chronic viral hepatitis in the absence of chronic alcohol abuse. This fact should be kept in mind by physicians when using this marker to detect alcohol abuse.
Resumo:
Mammary tumors of a newly isolated strain of Chinese wild mouse (JYG mouse) harbor exogenous mouse mammary tumor virus (MMTV). The complete nucleotide sequence of exogenous JYG-MMTV was determined on the proviral 5' long terminal repeat (LTR)(partial)-gag-pol-env-3' LTR (partial) fragment cloned into a plasmid vector and the cDNA sequence from JYG-MMTV producing cells. Similarly to the other MMTV species the LTR of JYG-MMTV contains an open reading frame (ORF). The amino acid sequence of the JYG-MMTV ORF resembles that of SW-MMTV (92% identity) and endogenous Mtv-7 (93% identity) especially at the C-terminal region. Thus, a functional similarity in T-cell receptor V beta recognition as a superantigen is implicated among these MMTV species. Analysis of the viral gag nucleotide sequence revealed that this gene is not disrupted by the bacterial insertion sequence IS1 or IS2, which have been reported to be present in the majority of the plasmids containing the gag region. Comparison of amino acid sequences of JYG-MMTV with those of BR6-MMTV showed that over 96% of the amino acids of gag, pol, protease and env products are identical. These results suggest the intact nature of the nucleotide sequence of the near full-length MMTV genome cloned in the plasmid.
Resumo:
OBJECTIVE: To study the causes for the lack of clinical progression in a superinfected HIV-1 LTNP elite controller patient.¦METHODOLOGY AND PRINCIPAL FINDINGS: We studied host genetic, virological and immunological factors associated with viral control in a SI long term non progressor elite controller (LTNP-EC). The individual contained both viruses and maintained undetectable viral loads for >20 years and he did not express any of the described host genetic polymorphisms associated with viral control. None of four full-length gp160 recombinants derived from the LTNP-EC replicated in heterologous peripheral blood mononuclear cells. CTL responses after SI were maintained in two samples separated by 9 years and they were higher in breadth and magnitude than responses seen in most of 250 treatment naïve patients and also 25 controller subjects. The LTNP-EC showed a neutralization response, against 4 of the 6 viruses analyzed, superior to other ECs.¦CONCLUSIONS: The study demonstrated that a strong and sustained cellular and humoral immune response and low replicating viruses are associated with viral control in the superinfected LTNP-EC.
Resumo:
Recent experiments with mouse mammary tumor virus indicate that expression of a virally encoded superantigen by B cells and its subsequent recognition by T cells are essential steps for amplification of infection and virus transmission. Preliminary results suggest that superantigens may also be expressed during retroviral infection in humans.
Resumo:
Superantigens are bacterial, viral, or retroviral proteins which can activate specifically a large proportion of T cells. In contrast with classical peptide antigen recognition, superantigens do not require processing to small peptides but act as complete or partially processed proteins. They can bind to major histocompatibility complex class II molecules and stimulate T cells expressing particular T cell receptor V beta chains. The other polymorphic parts of the T cell receptor, which are crucial for classical antigen recognition, are not important for this interaction. When this strategy is used a large proportion of the host immune system can be activated shortly after infection. The activated cells have a wide variety of antigen specificities. The ability to stimulate polyclonal B (IgG) as well as T cell responses raises possibilities of a role for superantigens in the induction of autoimmune diseases. Superantigens have been a great tool in the hands of immunologists in unravelling some of the basic mechanisms of tolerance and immunity.