63 resultados para tool - use


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The Nutritional Risk Score (NRS) is a validated tool to identify patients who should benefit of nutritional interventions. Nutritional screening however has not yet been widely adopted by surgeons. Furthermore, the question about reliability of nutritional assessment performed by surgeons is still unanswered. METHODS: Data was obtained from a recent randomised trial including 146 patients with an NRS ≥3 as assessed by the surgeons. Additional detailed nutritional assessment was performed for all patients by nutritional specialists and entered prospectively in a dedicated database. In this retrospective, surgeons' scoring of NRS and its components was compared to the assessment by nutritionists (considered as gold standard). RESULTS: Prospective NRS scores by surgeons and nutritionists were available for 141 patients (97%). Surgeons calculated a NRS of 7, 6, 5, 4 and 3 in 2, 8, 38, 21 and 72 patients respectively. Nutritionists calculated a NRS of 6, 5, 4, 3 and 2 in 8, 26, 47, 57, 3 patients, respectively. Surgeons' assessment was entirely correct in 56 patients (40%), while at least the final score was consistent in 63 patients (45%). Surgeons overrated the NRS in 21% of patients and underestimated the score in 29%. Evaluation of the nutritional status showed most of the discrepancies (54%). CONCLUSION: Surgeon's assessment of nutritional status is modest at best. Close collaboration with nutritional specialists should be recommended in order to avoid misdiagnosis and under-treatment of patients at nutritional risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD) or performing size selection of the resulting fragments (in the case of single-digest RAD). Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD). In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites that usually causes loci dropout. This should enable the application of hyRAD to analyses at broader evolutionary scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species.