65 resultados para title sequences
Resumo:
Background: Arundinarieae are a large tribe of temperate woody bamboos for which phylogenetics are poorly understood because of limited taxon sampling and lack of informative characters. Aims: This study assessed phylogenetic relationships, origins and classification of Arundinarieae. Methods: DNA sequences (plastid trnL-F; nuclear ITS) were used for parsimony and Bayesian inference including 41 woody bamboo taxa. Divergence dates were estimated using a relaxed Bayesian clock. Results: Arundinarieae were monophyletic but their molecular divergence was low compared to the tropical Bambuseae. Ancestors of the Arundinarieae lineage were estimated to have diverged from the other bamboos 23 (15-30) million years ago (Mya). However, the Arundinarieae radiation occurred 10 (6-16) Mya compared to 18 (11-25) Mya for the tropical Bambuseae. Some groups could be defined within Arundinarieae, but they do not correspond to recognised subtribes such as Arundinariinae or Shibataeinae. Conclusions: Arundinarieae are a relatively ancient bambusoid lineage that underwent a rapid radiation in the late Miocene. The radiation coincides with the continental collision of the Indo-Australian and Eurasian Plates. Arundinarieae are distributed primarily in East Asia and the Himalayas to northern Southeast Asia. It is unknown whether they were present in Asia long before their radiation, but we believe recent dispersal is a more likely scenario. Keywords: Arundinarieae; Bambuseae; internal transcribed spacer (ITS); molecular clock; phylogenetics; radiation; temperate bamboos; Thamnocalaminae; trnL-F
Resumo:
The neural response to a violation of sequences of identical sounds is a typical example of the brain's sensitivity to auditory regularities. Previous literature interprets this effect as a pre-attentive and unconscious processing of sensory stimuli. By contrast, a violation to auditory global regularities, i.e. based on repeating groups of sounds, is typically detectable when subjects can consciously perceive them. Here, we challenge the notion that global detection implies consciousness by testing the neural response to global violations in a group of 24 patients with post-anoxic coma (three females, age range 45-87 years), treated with mild therapeutic hypothermia and sedation. By applying a decoding analysis to electroencephalographic responses to standard versus deviant sound sequences, we found above-chance decoding performance in 10 of 24 patients (Wilcoxon signed-rank test, P < 0.001), despite five of them being mildly hypothermic, sedated and unarousable. Furthermore, consistently with previous findings based on the mismatch negativity the progression of this decoding performance was informative of patients' chances of awakening (78% predictive of awakening). Our results show for the first time that detection of global regularities at neural level exists despite a deeply unconscious state.
Resumo:
The RFLP/PCR approach (restriction fragment length polymorphism/polymerase chain reaction) to genotypic mutation analysis described here measures mutations in restriction recognition sequences. Wild-type DNA is restricted before the resistant, mutated sequences are amplified by PCR and cloned. We tested the capacity of this experimental design to isolate a few copies of a mutated sequence of the human c-Ha-ras1 gene from a large excess of wild-type DNA. For this purpose we constructed a 272 bp fragment with 2 mutations in the PvuII recognition sequence 1727-1732 and studied the rescue by RFLP/PCR of a few copies of this 'PvuII mutant standard'. Following amplification with Taq-polymerase and cloning into lambda gt10, plaques containing wild-type sequence, PvuII mutant standard or Taq-polymerase induced bp changes were quantitated by hybridization with specific oligonucleotide probes. Our results indicate that 10 PvuII mutant standard copies can be rescued from 10(8) to 10(9) wild-type sequences. Taq polymerase errors originating from unrestricted, residual wild-type DNA were sequence dependent and consisted mostly of transversions originating at G.C bp. In contrast to a doubly mutated 'standard' the capacity to rescue single bp mutations by RFLP/PCR is limited by Taq-polymerase errors. Therefore, we assessed the capacity of our protocol to isolate a G to T transversion mutation at base pair 1698 of the MspI-site 1695-1698 of the c-Ha-ras1 gene from excess wild-type ras1 DNA. We found that 100 copies of the mutated ras1 fragment could be readily rescued from 10(8) copies of wild-type DNA.