147 resultados para three-dimensional continuun-mechanical image-warping
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
PURPOSE: The origin of the slow component is not fully understood. The mechanical hypothesis is one of the potential factors, because an increase in external mechanical work with fatigue was previously reported for a constant velocity run. The purpose of this study was to determine whether a change in mechanical work could occur during the development of the VO2 slow component under the effect of fatigue. METHODS: Twelve regional-level competitive runners performed a square-wave transition, corresponding to 95% of the speed associated with peak VO2 obtained during an incremental test. The VO2 response was fit with a classical model including two exponential functions. A specific treadmill with three-dimensional force transducers was used to measure the ground reaction force. Kinetic work (W(kin)), potential work (W(pot)), external work (W(ext)), and an index of internal work (W(int)) per unit of distance were quantified continuously. RESULTS: During the slow component of VO2, a significant increase in W (P< 0.01), no change in W, and a significant decrease in W and W index (P< 0.05, P< 0.001, respectively) were observed. CONCLUSION: The present study showed that the slow component of VO2 did not result partly from a change in mechanical work under the effect of fatigue. Nevertheless, the decrease in stride frequency (P< 0.001) and contact time (P< 0.001) suggested an alternative mechanical explanation. The slow component during running may be due to the cost of generating force or to alterations in the storage and recoil of elastic energy, and not to the external mechanical work.
Resumo:
Evaluation of segmentation methods is a crucial aspect in image processing, especially in the medical imaging field, where small differences between segmented regions in the anatomy can be of paramount importance. Usually, segmentation evaluation is based on a measure that depends on the number of segmented voxels inside and outside of some reference regions that are called gold standards. Although some other measures have been also used, in this work we propose a set of new similarity measures, based on different features, such as the location and intensity values of the misclassified voxels, and the connectivity and the boundaries of the segmented data. Using the multidimensional information provided by these measures, we propose a new evaluation method whose results are visualized applying a Principal Component Analysis of the data, obtaining a simplified graphical method to compare different segmentation results. We have carried out an intensive study using several classic segmentation methods applied to a set of MRI simulated data of the brain with several noise and RF inhomogeneity levels, and also to real data, showing that the new measures proposed here and the results that we have obtained from the multidimensional evaluation, improve the robustness of the evaluation and provides better understanding about the difference between segmentation methods.
Resumo:
During conventional x-ray coronary angiography, multiple projections of the coronary arteries are acquired to define coronary anatomy precisely. Due to time constraints, coronary magnetic resonance angiography (MRA) usually provides only one or two views of the major coronary vessels. A coronary MRA approach that allowed for reconstruction of arbitrary isotropic orientations might therefore be desirable. The purpose of the study was to develop a three-dimensional (3D) coronary MRA technique with isotropic image resolution in a relatively short scanning time that allows for reconstruction of arbitrary views of the coronary arteries without constraints given by anisotropic voxel size. Eight healthy adult subjects were examined using a real-time navigator-gated and corrected free-breathing interleaved echoplanar (TFE-EPI) 3D-MRA sequence. Two 3D datasets were acquired for the left and right coronary systems in each subject, one with anisotropic (1.0 x 1.5 x 3.0 mm, 10 slices) and one with "near" isotropic (1.0 x 1.5 x 1.0 mm, 30 slices) image resolution. All other imaging parameters were maintained. In all cases, the entire left main (LM) and extensive portions of the left anterior descending (LAD) and the right coronary artery (RCA) were visualized. Objective assessment of coronary vessel sharpness was similar (41% +/- 5% vs. 42% +/- 5%; P = NS) between in-plane and through-plane views with "isotropic" voxel size but differed (32% +/- 7% vs. 23% +/- 4%; P < 0.001) with nonisotropic voxel size. In reconstructed views oriented in the through-plane direction, the vessel border was 86% more defined (P < 0.01) for isotropic compared with anisotropic images. A smaller (30%; P < 0.001) improvement was seen for in-plane reconstructions. Vessel diameter measurements were view independent (2.81 +/- 0.45 mm vs. 2.66 +/- 0.52 mm; P = NS) for isotropic, but differed (2.71 +/- 0.51 mm vs. 3.30 +/- 0.38 mm; P < 0.001) between anisotropic views. Average scanning time was 2:31 +/- 0:57 minutes for anisotropic and 7:11 +/- 3:02 minutes for isotropic image resolution (P < 0.001). We present a new approach for "near" isotropic 3D coronary artery imaging, which allows for reconstruction of arbitrary views of the coronary arteries. The good delineation of the coronary arteries in all views suggests that isotropic 3D coronary MRA might be a preferred technique for the assessment of coronary disease, although at the expense of prolonged scan times. Comparative studies with conventional x-ray angiography are needed to investigate the clinical utility of the isotropic strategy.
3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition.
Resumo:
Current 2D black blood coronary vessel wall imaging suffers from a relatively limited coverage of the coronary artery tree. Hence, a 3D approach facilitating more extensive coverage would be desirable. The straightforward combination of a 3D-acquisition technique together with a dual inversion prepulse can decrease the effectiveness of the black blood preparation. To minimize artifacts from insufficiently suppressed blood signal of the nearby blood pools, and to reduce residual respiratory motion artifacts from the chest wall, a novel local inversion technique was implemented. The combination of a nonselective inversion prepulse with a 2D selective local inversion prepulse allowed for suppression of unwanted signal outside a user-defined region of interest. Among 10 subjects evaluated using a 3D-spiral readout, the local inversion pulse effectively suppressed signal from ventricular blood, myocardium, and chest wall tissue in all cases. The coronary vessel wall could be visualized within the entire imaging volume.
Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction.
Resumo:
Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.
Resumo:
OBJECTIVES: Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. METHODS: SN3D [field of view (FOV), 220-370 mm(3); slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115°] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77°) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. RESULTS: The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. CONCLUSIONS: Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. KEY POINTS: • The prevalence of renal failure is high among TAVR candidates. • Non-contrast 3D MR angiography allows for TAVR procedure planning. • The self-navigated sequence provides a significantly reduced scanning time.
Resumo:
PURPOSE: The goal of the present study was to use a three-dimensional (3D) gradient echo volume in combination with a fat-selective excitation as a 3D motion navigator (3D FatNav) for retrospective correction of microscopic head motion during high-resolution 3D structural scans of extended duration. The fat excitation leads to a 3D image that is itself sparse, allowing high parallel imaging acceleration factors - with the additional advantage of a minimal disturbance of the water signal used for the host sequence. METHODS: A 3D FatNav was inserted into two structural protocols: an inversion-prepared gradient echo at 0.33 × 0.33 × 1.00 mm resolution and a turbo spin echo at 600 μm isotropic resolution. RESULTS: Motion estimation was possible with high precision, allowing retrospective motion correction to yield clear improvements in image quality, especially in the conspicuity of very small blood vessels. CONCLUSION: The highly accelerated 3D FatNav allowed motion correction with noticeable improvements in image quality, even for head motion which was small compared with the voxel dimensions of the host sequence. Magn Reson Med 75:1030-1039, 2016. © 2015 Wiley Periodicals, Inc.
Resumo:
The aim of this study was to evaluate the combination of abdominoplasty with liposuction of both flanks with regards to length of scar, complications, and patient's satisfaction. A retrospective analysis of 35 patients who underwent esthetic abdominoplasty at our institution between 2002 and 2004 was performed. Thirteen patients underwent abdominoplasty with liposuction of both flanks, 22 patients underwent conventional abdominoplasty. Liposuction of the flanks did not increase the rate of complications of the abdominoplasty procedures. We found a tendency toward shorter scars in patients who underwent abdominoplasty combined with liposuction of the flanks. Implementation of 3-dimensional laser surface scanning to objectify the postoperative outcomes, documented a comparable degree of flatness of the achieved body contouring in both procedures. 3-dimensional laser surface scanning can be a valuable tool to objectify assessment of postoperative results.
Resumo:
BACKGROUND: Cone-beam computed tomography (CBCT) image-guided radiotherapy (IGRT) systems are widely used tools to verify and correct the target position before each fraction, allowing to maximize treatment accuracy and precision. In this study, we evaluate automatic three-dimensional intensity-based rigid registration (RR) methods for prostate setup correction using CBCT scans and study the impact of rectal distension on registration quality. METHODS: We retrospectively analyzed 115 CBCT scans of 10 prostate patients. CT-to-CBCT registration was performed using (a) global RR, (b) bony RR, or (c) bony RR refined by a local prostate RR using the CT clinical target volume (CTV) expanded with 1-to-20-mm varying margins. After propagation of the manual CT contours, automatic CBCT contours were generated. For evaluation, a radiation oncologist manually delineated the CTV on the CBCT scans. The propagated and manual CBCT contours were compared using the Dice similarity and a measure based on the bidirectional local distance (BLD). We also conducted a blind visual assessment of the quality of the propagated segmentations. Moreover, we automatically quantified rectal distension between the CT and CBCT scans without using the manual CBCT contours and we investigated its correlation with the registration failures. To improve the registration quality, the air in the rectum was replaced with soft tissue using a filter. The results with and without filtering were compared. RESULTS: The statistical analysis of the Dice coefficients and the BLD values resulted in highly significant differences (p<10(-6)) for the 5-mm and 8-mm local RRs vs the global, bony and 1-mm local RRs. The 8-mm local RR provided the best compromise between accuracy and robustness (Dice median of 0.814 and 97% of success with filtering the air in the rectum). We observed that all failures were due to high rectal distension. Moreover, the visual assessment confirmed the superiority of the 8-mm local RR over the bony RR. CONCLUSION: The most successful CT-to-CBCT RR method proved to be the 8-mm local RR. We have shown the correlation between its registration failures and rectal distension. Furthermore, we have provided a simple (easily applicable in routine) and automatic method to quantify rectal distension and to predict registration failure using only the manual CT contours.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.
Resumo:
Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.
Resumo:
Coronary MR imaging is a promising noninvasive technique for the combined assessment of coronary artery anatomy and function. Anomalous coronary arteries and aneurysms can reliably be assessed in clinical practice using coronary MR imaging and the presence of significant left main or proximal multivessel coronary artery disease detected. Technical challenges that need to be addressed are further improvements in motion suppression and abbreviated scanning times aimed at improving spatial resolution and patient comfort. The development of new and specific contrast agents, high-field MR imaging with improved spatial resolution, and continued progress in MR imaging methods development will undoubtedly lead to further progress toward the noninvasive and comprehensive assessment of coronary atherosclerotic disease.
Resumo:
PURPOSE: To investigate the impact of end-systolic imaging on quality of right coronary magnetic resonance angiography (MRA) in comparison to diastolic and to study the effect of RR interval variability on image quality. MATERIALS AND METHODS: The right coronary artery (RCA) of 10 normal volunteers was imaged at 3T using parallel imaging (sensitivity encoding [SENSE]). Navigator-gated three-dimensional (3D) gradient echo was used three times: 1) end-systolic short acquisition (SS): 35-msec window; 2) diastolic short (DS): middiastolic acquisition using 35-msec window; and 3) diastolic long (DL): 75-msec diastolic acquisition window. Vectorcardiogram (VCG) data was used to analyze RR variability. Vessel sharpness, length, and diameter were compared to each other and correlated with RR variability. Blinded qualitative image scores of the images were compared. RESULTS: Quantitative and qualitative parameters were not significantly different and showed no significant correlation with RR variability. CONCLUSION: Imaging the RCA at 3T during the end-systolic rest period using SENSE is possible without significant detrimental effect on image quality. Breaking away from the standard of imaging only during diastole can potentially improve image quality in tachycardic patients or used for simultaneous imaging during both periods in a single scan.