139 resultados para surface antigen
Resumo:
NK cell self-tolerance is maintained by inhibitory receptors specific for MHC class I molecules. Inhibitory NK receptors are also expressed on memory CD8 T cells but their biological relevance on T cells is unclear. In this study, we describe the expression of the Ly49A receptor on a subset of autoreactive T cells which persist in mice double-transgenic for the lymphocytic choriomeningitis virus-derived peptide gp33 and a TCRalphabeta specific for the gp33. No Ly49A-expressing cells are found in TCRalphabeta single-transgenic mice, indicating that the presence of the autoantigen is required for Ly49A induction. Direct evidence for an Ag-specific initiation of Ly49A expression has been obtained in vitro after stimulation of autoreactive TCRalphabeta T cells with the cognate self-Ag. This expression of Ly49A substantially reduces Ag-specific activation of autoreactive T cells. These findings thus suggest that autoantigen-specific induction of inhibitory NK cell receptors on T cells may contribute to peripheral self-tolerance.
Resumo:
A monoclonal antibody, LAU-A1, which selectively reacts with all cells of the T-lineage, was derived from a fusion between spleen cells of a mouse immunized with paediatric thymocytes and mouse myeloma P X 63/Ag8 cells. As shown by an antibody-binding radioimmunoassay and analysis by flow microfluorometry of cells labelled by indirect immunofluorescence, the LAU-A1 antibody reacted with all six T-cell lines but not with any of the B-cell lines or myeloid cell lines tested from a panel of 17 human hematopoietic cell lines. The LAU-A1 antibody was also shown to react with the majority of thymocytes and E-rosette-enriched peripheral blood lymphocytes. Among the malignant cell populations tested, the blasts from all 20 patients with acute T-cell lymphoblastic leukemia (T-ALL) were found to react with the LAU-A1 antibody, whereas blasts from 85 patients with common ALL and 63 patients with acute myeloid leukemias were entirely negative. Examination of frozen tissue sections from fetal and adult thymuses stained by an indirect immunoperoxidase method revealed that cells expressing the LAU-A1 antigen were localized in both the cortex and the medulla. From the very broad reactivity spectrum of LAU-A1 antibody, we conclude that this antibody is directed against a T-cell antigen expressed throughout the T-cell differentiation lineage. SDS-PAGE analysis of immunoprecipitates formed by LAU-A1 antibody with detergent lysates of radiolabeled T-cells showed that the LAU-A1 antigen had an apparent mol. wt of 76,000 under non-reducing conditions. Under reducing conditions a single band with an apparent mol. wt of 40,000 was observed. Two-dimensional SDS-PAGE analysis confirmed that the 76,000 mol. wt component consisted of an S-S-linked dimeric complex. The surface membrane expression of LAU-A1 antigen on HSB-2 T-cells was modulated when these cells were cultured in the presence of LAU-A1 antibody. Re-expression of LAU-A1 antigen occurred within 24 hr after transfer of the modulated cells into antibody-free medium.
Resumo:
The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor-triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.
Resumo:
It is well established that cytotoxic T lymphocytes play a pivotal role in the protection against intracellular pathogens and tumour cells. Such protective immune responses rely on the specific T cell receptor (TCR)-mediated recognition by CD8 T cells of small antigenic peptides presented in the context of class-I Major Histocompatibility Complex molecules (pMHCs) on the surface of infected or malignant cells. The strength (affinity/avidity) of this interaction is a major correlate of protection. Although tumour-reactive CD8 T cells can be observed in cancer patients, anti-tumour immune responses are often ineffective in controlling or eradicating the disease due to the relative low TCR affinity of these cells. To overcome this limitation, tumour-specific CD8 T cells can be genetically modified to express TCRs of improved binding strength against a defined tumour antigen before adoptive cell transfer into cancer patients. We previously generated a panel of TCRs specific for the cancer-testis antigen NY-ESO-l,57.165 with progressively increased affinities for the pMHC complex, thus providing us with a unique tool to investigate the causal link between the surface expression of such TCRs and T cell activation and function. We recently demonstrated that anti-tumour CD8 T cell reactivity could only be improved within physiological affinity limits, beyond which drastic functional declines were observed, suggesting the presence of multiple regulatory mechanisms limiting T cell activation and function in a TCR affinity-dependent manner. The overarching goal of this thesis was (i) to assess the precise impact of TCR affinity on T cell activation and signalling at the molecular level and (ii) to gain further insights on the mechanisms that regulate and delimitate maximal/optimized CD8 T cell activation and signalling. Specifically, by combining several technical approaches we characterized the activation status of proximal (i.e. CD3Ç, Lek, and ZAP-70) and distal (i.e. ERK1/2) signalling molecules along the TCR affinity gradient. Moreover, we assessed the extent of TCR downmodulation, a critical step for initial T cell activation. CD8 T cells engineered with the optimal TCR affinity variants showed increased activation levels of both proximal and distal signalling molecules when compared to the wild-type T cells. Our analyses also highlighted the "paradoxical" status of tumour-reactive CD8 T cells bearing very high TCR affinities, which retained strong proximal signalling capacity and TCR downmodulation, but were unable to propagate signalling distally (i.e. pERKl/2), resulting in impaired cell-mediated functions. Importantly, these very high affinity T cells displayed maximal levels of SHP-1 and SHP-2 phosphatases, two negative regulatory molecules, and this correlated with a partial pERKl/2 signalling recovery upon pharmacological SHP-l/SHP-2 inhibition. These findings revealed the putative presence of inhibitory regulators of the TCR signalling cascade acting very rapidly following tumour-specific stimulation. Moreover, the very high affinity T cells were only able to transiently express enhanced proximal signalling molecules, suggesting the presence of an additional level of regulation that operates through the activation of negative feedback loops over time, limiting the duration of the TCR-mediated signalling. Overall, the determination of TCR-pMHC binding parameters eliciting optimal CD8 T cell activation, signalling, and effector function while guaranteeing high antigen specificity, together with the identification of critical regulatory mechanisms acting proximally in the TCR signalling cascade, will directly contribute to optimize and support the development of future TCR-based adoptive T cell strategies for the treatment of malignant diseases. -- Les lymphocytes T CD8 cytotoxiques jouent un rôle prédominant dans la protection contre les pathogènes intracellulaires et les cellules tumorales. Ces réponses immunitaires dépendent de la spécificité avec laquelle les récepteurs T (TCR) des lymphocytes CD8 reconnaissent les peptides antigéniques présentés par les molécules du complexe Majeur de Histocompatibilité de classe I (pCMH) à la surface des cellules infectées ou malignes. La force (ou affinité/avidité) de l'interaction du TCR-pCMH est un corrélat majeur de protection. Les réponses immunitaires sont cependant souvent inefficaces et ne permettent pas de contrôler ou d'éliminer les cellules tumorales chez les patients atteint du cancer, et ce à cause de la relative faible reconnaissance des TCRs exprimés par les lymphocytes T CD8 envers les antigènes tumoraux. Afin de surmonter cette limitation, les cellules T anti-tumorales peuvent être génétiquement modifiées en les dotant de TCRs préalablement optimisés afin d'augmenter leur reconnaissance ou affinité contre les antigènes tumoraux, avant leur ré¬infusion dans le patient. Nous avons récemment généré des cellules T CD8 exprimant un panel de TCRs spécifiques pour l'antigène tumoral NY-ESO-l157.16J avec des affinités croissantes, permettant ainsi d'investiguer la causalité directe entre l'affinité du TCR-pCMH et la fonction des cellules T CD8. Nous avons démontré que la réactivité anti-tumorale pouvait être améliorée en augmentant l'affinité du TCR dans une intervalle physiologique, mais au delà duquel nous observons un important déclin fonctionnel. Ces résultats suggèrent la présence de mécanismes de régulation limitant l'activation des cellules T de manière dépendante de l'affinité du TCR. Le but de cette thèse a été (i) de définir l'impact précis de l'affinité du TCR sur l'activation et la signalisation des cellules T CD8 au niveau moléculaire et (ii) d'acquérir de nouvelles connaissances sur les mécanismes qui régulent et délimitent l'activation et la signalisation maximale des cellules T CD8 optimisées. Spécifiquement, en combinant plusieurs approches technologiques, nous avons caractérisé l'état d'activation de différentes protéines de la voie de signalisation proximale (CD3Ç, Lek et ZAP-70) et distale (ERK1/2) le long du gradient d'affinité du TCR, ainsi que l'internalisation du TCR, une étape clef dans l'activation initiale des cellules T. Les lymphocytes T CD8 exprimant des TCRs d'affinité optimale ont montré des niveaux d'activation augmentés des molécules proximales et distales par rapport aux cellules de type sauvage (wild-type). Nos analyses ont également mis en évidence un paradoxe chez les cellules T CD8 équipées avec des TCRs de très haute affinité. En effet, ces cellules anti-tumorales sont capables d'activer leurs circuits biochimiques au niveau proximal et d'internaliser efficacement leur TCR, mais ne parviennent pas à propager les signaux biochimiques dépendants du TCR jusqu'au niveau distal (via phospho-ERKl/2), avec pour conséquence une limitation de leur capacité fonctionnelle. Finalement, nous avons démontré que SHP-1 et SHP-2, deux phosphatases avec des propriétés régulatrices négatives, étaient majoritairement exprimées dans les cellules T CD8 de très hautes affinités. Une récupération partielle des niveaux d'activation de ERK1/2 a pu être observée après l'inhibition pharmacologique de ces phosphatases. Ces découvertes révèlent la présence de régulateurs moléculaires qui inhibent le complexe de signalisation du TCR très rapidement après la stimulation anti-tumorale. De plus, les cellules T de très hautes affinités ne sont capables d'activer les molécules de la cascade de signalisation proximale que de manière transitoire, suggérant ainsi un second niveau de régulation via l'activation de mécanismes de rétroaction prenant place progressivement au cours du temps et limitant la durée de la signalisation dépendante du TCR. En résumé, la détermination des paramètres impliqués dans l'interaction du TCR-pCMH permettant l'activation de voies de signalisation et des fonctions effectrices optimales ainsi que l'identification des mécanismes de régulation au niveau proximal de la cascade de signalisation du TCR contribuent directement à l'optimisation et au développement de stratégies anti-tumorales basées sur l'ingénierie des TCRs pour le traitement des maladies malignes.
Resumo:
Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR.
Resumo:
T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.
Resumo:
Notch proteins influence cell-fate decisions in many developmental systems. Gain-of-function studies have suggested a crucial role for Notch1 signaling at several stages during lymphocyte development, including the B/T, alphabeta/gammadelta and CD4/CD8 lineage choices. Here, we critically re-evaluate these conclusions in the light of recent studies that describe inducible and tissue-specific targeting of the Notch1 gene.
Resumo:
Carcinoembryonic antigen (CEA), immunologically identical to CEA derived from colonic carcinoma, was identified and purified from perchloric acid (PCA) extracts of bronchial and mammary carcinoma. CEA extracted from bronchial and mammary carcinoma was quantitated by single radial immunodiffusion and was found to be in average about 50-75 times less abundant in these tumors than in colonic carcinoma. CEA could also be detected in one normal breast in lactation and at lower concentrations in normal lung (1000-4000 times lower than in colonic carcinoma). The small amounts of CEA present in normal tissues are distinct from the glycoprotein of small mol. wt showing only partial identity with CEA, that we recently identified and extracted in much larger quantities from normal lung and spleen. The demonstration of the presence of CEA in non digestive carcinoma by classical gel precipitation analysis suggests that the CEA detected in the plasma of such patients by radioimmunoassay is also identical to colonic carcinoma CEA. Our comparative study of plasma CEA from bronchial and colonic carcinoma, showing that CEA from both types of patient has the same elution pattern on Sephadex G-200 and gives parallel inhibition curves in the radioimmunoassay, is in favor of this hypothesis. However, it should not be concluded that all positive CEA radioimmunoassay indicate the presence of an antigen identical to colonic carcinoma CEA. A word of warning concerning the interpretation of radioimmunoassay is required by the observation that the addition of mg amounts of PCA extract of normal plasma, cleared of CEA by Sephadex filtration, could interfere in the test and mimic the presence of CEA.
Resumo:
The mechanism of CD8 cooperation with the TCR in antigen recognition was studied on live T cells. Fluorescence correlation measurements yielded evidence of the presence of two TCR and CD8 subpopulations with different lateral diffusion rate constants. Independently, evidence for two subpopulations was derived from the experimentally observed two distinct association phases of cognate peptide bound to class I MHC (pMHC) tetramers and the T cells. The fast phase rate constant ((1.7 +/- 0.2) x 10(5) M(-1) s(-1)) was independent of examined cell type or MHC-bound peptides' structure. Its value was much faster than that of the association of soluble pMHC and TCR ((7.0 +/- 0.3) x 10(3) M(-1) s(-1)), and close to that of the association of soluble pMHC with CD8 ((1-2) x 10(5) M(-1) s(-1)). The fast binding phase disappeared when CD8-pMHC interaction was blocked by a CD8-specific mAb. The latter rate constant was slowed down approximately 10-fold after cells treatment with methyl-beta-cyclodextrin. These results suggest that the most efficient pMHC-cell association route corresponds to a fast tetramer binding to a colocalized CD8-TCR subpopulation, which apparently resides within membrane rafts: the reaction starts by pMHC association with the CD8. This markedly faster step significantly increases the probability of pMHC-TCR encounters and thereby promotes pMHC association with CD8-proximal TCR. The slow binding phase is assigned to pMHC association with a noncolocalized CD8-TCR subpopulation. Taken together with results of cytotoxicity assays, our data suggest that the colocalized, raft-associated CD8-TCR subpopulation is the one capable of inducing T-cell activation.
Resumo:
RESUME Nous n'avons pas de connaissance précise des facteurs à l'origine de l'hétérogénéité phénotypique des cellules T CD4 mémoires. Une troisième population phénotypique des cellules T CD4 mémoires, caractérisée par les marqueurs CD45RA+CCR7- a été identifiée dans cette étude. Cette population présente un état de différentiation avancée, comme en témoigne son histoire de réplication, ainsi que sa capacité de prolifération homéostatique. Les réponses des cellules T CD4 mémoires à différentes conditions de persistance et charge antigénique ont trois patterns phénotypiques différents, caractérisés par les marqueurs CD45RA et CCR7. La réponse CD4 mono -phénotypique CD45RA-CCR7+ ou CD45RA- CCR7- est associée à des conditions d'élimination de l'antigène (telle la réponse CD4 tétanos spécifique) ou à des conditions de persistance antigénique et de virémie élevée (telle la réponse HIV chronique ou la primo-infection CMV) respectivement. D'autre part, les réponses T CD4 multi -phénotypiques CD45RA-CCR7+ sont associées à des conditions d'exposition antigénique prolongée et de faible virémie (telles les infections CMV, EBV et HSV ou les infections HIV chez les long term non progressons). La réponse mono -phénotypique CD45RA- CCR7+ est propre aux cellules T CD4 secrétant de IL2, définies également comme centrales mémoires, la réponse CD45RA- CCR7- aux cellules T CD4 secrétant de l'IFNγ et finalement la réponse mufti-phénotypique aux cellules T CD4 secrétant à la fois de l'IL2 et de l' IFNγ. En conclusion, ces résultats témoignent d'une régulation de l'hétérogénéité phénotypique par l'exposition et la charge antigénique. ABSTRACT The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA+CCRT that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA'CCR7+ or CD45RA'CCR7' CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA CCR7+, CD45RA'CCRT and CD45RA+CCRT CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA'CCR7+ response was typical of central memory (TCM) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA CCRT response of effector memory (TEM) IFN-γ -secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-γ -secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
Background: Plasmodium falciparum(P. falciparum) merozoite surfaceprotein 2 (MSP-2) is one of bloodstage proteins that are associated withprotection from malaria. MSP-2 consistsof a highly polymorphic centralrepeat region flanked by a dimorphicregion that defines the two allelicfamilies, 3D7 and FC27; N- and Cterminalregions are conserved domains.Long synthetic peptides (LSP)representing the two allelic familiesof MSP-2 and constant regions arerecognized by sera from donors livingin endemic areas; and specific antibodies(Abs) are associated with protectionand active in antibody dependentcellular inhibition (ADCI) in vitro.However, the fine specificity ofAb response to the two allelic familiesof MSP-2 is unknown. Methods: Peptidesrepresenting dimorphic regionof 3D7 and FC27 families and theirC-terminal (common fragment to thetwo families) termed 3D7-D (88 aa),FC27-D (48 aa) and C (40 aa) respectivelywere synthesized. Overlapping20 mer peptides covering dimorphicand constant regions of two familieswere also synthesized for epitopemapping. Human sera were obtainedfrom donors living in malaria endemicareas. SpecificDand CregionsAbs were purified from single or poolhuman sera. Sera from mice were obtainedafter immunization with thetwo families LSP mixture in three differentadjuvants: alhydrogel (Alum),Glucopyranosyl Lipid Adjuvant-Stableoil-in-water Emulsion (GLA-SE)and Virosome. For ADCI, P. falciparum(strain 3D7) parasite wasmaintained in culture at 0.5% parasitemiaand 4% hematocrit in air tightbox at love oxygen (2%) and 37 ºC.Results: We identified several epitopesfrom the dimorphic and constantregions of both families of MSP-2, inmice and humans (adults and children).In human, most recognizedepitopes were the same in differentendemic regions for each domain ofthe two families of MSP-2. In mice,the differential recognition of epitopewas depending on the strain of mouseand interestingly on the adjuvantused. GLA-SE and alum as adjuvantswere more often associated with therecognition of multiple epitopes thanvirosomes. Epitope-specific Abs recognizednative merozoites of P.falciparum and were active in ADCIto block development of parasite.Conclusion: The delineation of a limitednumber of epitopes could be exploitedto develop MSP-2 vaccinesactive on both allelic families ofMSP-2.
Resumo:
INTRODUCTION: Timely diagnosis of invasive candidiasis (IC) remains difficult as the clinical presentation is not specific and blood cultures lack sensitivity and need a long incubation time. Thus, non-culture-based methods for diagnosing IC have been developed. Mannan antigen (Mn) and anti-mannan antibodies (A-Mn) are present in patients with IC. On behalf of the Third European Conference on Infections in Leukemia, the performance of these tests was analysed and reviewed. METHODS: The literature was searched for studies using the commercially available sandwich enzyme-linked immunosorbent assays (Platelia™, Bio-Rad Laboratories, Marnes-la-Coquette, France) for detecting Mn and A-Mn in serum. The target condition of this review was IC defined according to 2008 European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. Sensitivity, specificity and diagnostic odds ratios (DOR) were calculated for Mn, A-Mn and combined Mn/A-Mn testing. RESULTS: Overall, 14 studies that comprised 453 patients and 767 controls were reviewed. The patient populations included in the studies were mainly haematological and cancer cases in seven studies and mainly intensive care unit and surgery cases in the other seven studies. All studies but one were retrospective in design. Mn sensitivity was 58% (95% confidence interval [CI], 53-62); specificity, 93% (95% CI, 91-94) and DOR, 18 (95% CI 12-28). A-Mn sensitivity was 59% (95% CI, 54-65); specificity, 83% (95% CI, 79-97) and DOR, 12 (95% CI 7-21). Combined Mn/A-Mn sensitivity was 83% (95% CI, 79-87); specificity, 86% (95% CI, 82-90) and DOR, 58 (95% CI 27-122). Significant heterogeneity of the studies was detected. The sensitivity of both Mn and A-Mn varied for different Candida species, and it was the highest for C. albicans, followed by C. glabrata and C. tropicalis. In 73% of 45 patients with candidemia, at least one of the serological tests was positive before the culture results, with mean time advantage being 6 days for Mn and 7 days for A-Mn. In 21 patients with hepatosplenic IC, 18 (86%) had Mn or A-Mn positive test results at a median of 16 days before radiological detection of liver or spleen lesions. CONCLUSIONS: Mn and A-Mn are useful for diagnosis of IC. The performance of combined Mn/A-Mn testing is superior to either Mn or A-Mn testing.
Resumo:
In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.