278 resultados para subcellular enzyme binding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exogenous administration of glucocorticoids is a widely used and efficient tool to investigate the effects of elevated concentrations of these hormones in field studies. Because the effects of corticosterone are dose and duration-dependent, the exact course of plasma corticosterone levels after exogenous administration needs to be known. We tested the performance of self-degradable corticosterone pellets (implanted under the skin) in elevating plasma corticosterone levels. We monitored baseline (sampled within 3min after capture) total corticosterone levels and investigated potential interactions with corticosteroid-binding-globulin (CBG) capacity and the endogenous corticosterone response to handling in Eurasian kestrel Falco tinnunculus and barn owl Tyto alba nestlings. Corticosterone pellets designed for a 7-day-release in rodents elevated circulating baseline total corticosterone during only 2-3 days compared to placebo-nestlings. Highest levels occurred 1-2days after implantation and levels decreased strongly thereafter. CBG capacity was also increased, resulting in a smaller, but still significant, increase in baseline free corticosterone levels. The release of endogenous corticosterone as a response to handling was strong in placebo-nestlings, but absent 2 and 8 days after corticosterone pellet implantation. This indicates a potential shut-down of the hypothalamo-pituitary-adrenal axis after the 2-3 days of elevated baseline corticosterone levels. 20 days after pellet implantation, the endogenous corticosterone response to handling of nestlings implanted with corticosterone pellets attained similar levels as in placebo-nestlings. Self-degradable pellets proved to be an efficient tool to artificially elevate circulating baseline corticosterone especially in field studies, requiring only one intervention. The resulting peak-like elevation of circulating corticosterone, the concomitant elevation of CBG capacity, and the absence of an endogenous corticosterone response to an acute stressor have to be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common acute lymphoblastic leukemia antigen (CALLA) has been detected in biological fluids using a radioimmunoassay based on the inhibition of binding of 125I-labeled monoclonal anti-CALLA antibody to glutaraldehyde-fixed NALM-1 cells. With this assay, we showed first that CALLA was released in culture fluids from NALM-1 and Daudi cell lines but was absent from culture fluids from CALLA negative cell lines. Then, we found that the sera of 34 out of 42 patients (81%) with untreated common acute lymphoblastic leukemia (c-ALL) contained higher CALLA levels than any of the 42 serum samples from healthy controls. The specificity of these results was further demonstrated by testing in parallel the sera from 48 patients with CALLA negative leukemias, including 26 acute myeloid leukemia (AML), 12 T-cell acute lymphoblastic leukemia (T-ALL), and 10 acute undifferentiated leukemia (AUL). All of these sera gave negative results, except for one patient with AUL, who had a significantly elevated circulating CALLA level, and one patient with AML, who had a borderline CALLA level, 3 SD over the mean of the normal sera. Preliminary results suggest that circulating CALLA is associated with membrane fragments or vesicles, since the total CALLA antigenic activity was recovered in the pellet of the serum samples centrifuged at 100,000 g. In addition, the CALLA-positive pellets contained an enzyme considered as a membrane marker, 5'-nucleotidase. Evaluation of the clinical importance of repeated serum CALLA determinations for the monitoring of c-ALL patients deserves further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were twofold. The first was to investigate the diagnostic performance of two biochemical markers, procalcitonin (PCT) and lipopolysaccharide-binding protein (LBP), considering each individually and then combined, for the postmortem diagnosis of sepsis. We also tested the usefulness of pericardial fluid for postmortem LBP determination. Two study groups were formed, a sepsis-related fatalities group of 12 cases and a control group of 30 cases. Postmortem native CT scans, autopsy, histology, neuropathology, and toxicology as well as other postmortem biochemical investigations were performed in all cases. Microbiological investigations were also carried out in the septic group. Postmortem serum PCT and LBP levels differed between the two groups. Both biomarkers, individually considered, allowed septic states to be diagnosed, whereas increases in both postmortem serum PCT and LBP levels were only observed in cases of sepsis. Similarly, normal PCT and LBP values in postmortem serum were identified only in non-septic cases. Pericardial fluid LBP levels do not correlate with the presence of underlying septic states. No relationship was observed between postmortem serum and pericardial fluid LBP levels in either septic or non-septic groups, or between pericardial fluid PCT and LBP levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methyl-CpG Binding Domain (MBD) proteins are thought to be key molecules in the interpretation of DNA methylation signals leading to gene silencing through recruitment of chromatin remodeling complexes. In cancer, the MBD-family member, MBD2, may be primarily involved in the repression of genes exhibiting methylated CpG at their 5' end. Here we ask whether MBD2 randomly associates methylated sequences, producing chance effects on transcription, or exhibits a more specific recognition of some methylated regions. Using chromatin and DNA immunoprecipitation, we analyzed MBD2 and RNA polymerase II deposition and DNA methylation in HeLa cells on arrays representing 25,500 promoter regions. This first whole-genome mapping revealed the preferential localization of MBD2 near transcription start sites (TSSs), within the region analyzed, 7.5 kb upstream through 2.45 kb downstream of 5' transcription start sites. Probe by probe analysis correlated MBD2 deposition and DNA methylation. Motif analysis did not reveal specific sequence motifs; however, CCG and CGC sequences seem to be overrepresented. Nonrandom association (multiple correspondence analysis, p < 0.0001) between silent genes, DNA methylation and MBD2 binding was observed. The association between MBD2 binding and transcriptional repression weakened as the distance between binding site and TSS increased, suggesting that MBD2 represses transcriptional initiation. This hypothesis may represent a functional explanation for the preferential binding of MBD2 at methyl-CpG in TSS regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several studies reporting cell death (CD) in lower eukaryotes and in the human protozoan parasite Leishmania, proteolytic activity was revealed using pan-caspase substrates or inhibitors such as carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). However, most of the lower eukaryotes do not encode caspase(s) but MCA, which differs from caspase(s) in its substrate specificity and cannot be accountable for the recognition of Z-VAD-FMK. In the present study, we were interested in identifying which enzyme was capturing the Z-VAD substrate. We show that heat shock (HS) induces Leishmania CD and leads to the intracellular binding of Z-VAD-FMK. We excluded binding and inhibition of Z-VAD-FMK to Leishmania major metacaspase (LmjMCA), and identified cysteine proteinase C (LmjCPC), a cathepsin B-like (CPC) enzyme, as the Z-VAD-FMK binding enzyme. We confirmed the specific interaction of Z-VAD-FMK with CPC by showing that Z-VAD binding is absent in a Leishmania mexicana strain in which the cpc gene was deleted. We also show that parasites exposed to various stress conditions release CPC into a soluble fraction. Finally, we confirmed the role of CPC in Leishmania CD by showing that, when exposed to the oxidizing agent hydrogen peroxide (H(2)O(2)), cpc knockout parasites survived better than wild-type parasites (WT). In conclusion, this study identified CPC as the substrate of Z-VAD-FMK in Leishmania and as a potential additional executioner protease in the CD cascade of Leishmania and possibly in other lower eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tolerance is a poorly understood phenomenon that allows bacteria exposed to a bactericidal antibiotic to stop their growth and withstand drug-induced killing. This survival ability has been implicated in antibiotic treatment failures. Here, we describe a single nucleotide mutation (tol1) in a tolerant Streptococcus gordonii strain (Tol1) that is sufficient to provide tolerance in vitro and in vivo. It induces a proline-to-arginine substitution (P483R) in the homodimerization interface of enzyme I of the sugar phosphotransferase system, resulting in diminished sugar uptake. In vitro, the susceptible wild-type (WT) and Tol1 cultures lost 4.5 and 0.6 log(10) CFU/ml, respectively, after 24 h of penicillin exposure. The introduction of tol1 into the WT (WT P483R) conferred tolerance (a loss of 0.7 log(10) CFU/ml/24 h), whereas restitution of the parent sequence in Tol1 (Tol1 R483P) restored antibiotic susceptibility. Moreover, penicillin treatment of rats in an experimental model of endocarditis showed a complete inversion in the outcome, with a failure of therapy in rats infected with WT P483R and the complete disappearance of bacteria in animals infected with Tol1 R483P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential stages in the life cycle of the ionotropic 5-HT(3) receptor (5-HT(3)R) were resolved temporally and spatially in live cells by multicolor fluorescence confocal microscopy. The insertion of the enhanced cyan fluorescent protein into the large intracellular loop delivered a fluorescent 5-HT(3)R fully functional in terms of ligand binding specificity and channel activity, which allowed for the first time a complete real-time visualization and documentation of intracellular biogenesis, membrane targeting, and ligand-mediated internalization of a receptor belonging to the ligand-gated ion channel superfamily. Fluorescence signals of newly expressed receptors were detectable in the endoplasmic reticulum about 3 h after transfection onset. At this stage receptor subunits assembled to form active ligand binding sites as demonstrated in situ by binding of a fluorescent 5-HT(3)R-specific antagonist. After novel protein synthesis was chemically blocked, the 5-HT(3) R populations in the endoplasmic reticulum and Golgi cisternae moved virtually quantitatively to the cell surface, indicating efficient receptor folding and assembly. Intracellular 5-HT(3) receptors were trafficking in vesicle-like structures along microtubules to the cell surface at a velocity generally below 1 mum/s and were inserted into the plasma membrane in a characteristic cluster distribution overlapping with actin-rich domains. Internalization of cell surface 5-HT(3) receptors was observed within minutes after exposure to an extracellular agonist. Our orchestrated use of spectrally distinguishable fluorescent labels for the receptor, its cognate ligand, and specific organelle markers can be regarded as a general approach allowing subcellular insights into dynamic processes of membrane receptor trafficking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acute blood pressure response to an angiotensin converting enzyme inhibitor (enalaprilat) was compared in patients with uncomplicated essential hypertension with that obtained under similar conditions with a calcium entry blocker (nifedipine). The patients were studied after a 3 week washout period. At a 48 h interval, each patient received in randomized order either enalaprilat (5 mg i.v.) or nifedipine (10 mg p.o.). Enalaprilat and nifedipine were equally effective in acutely lowering blood pressure. However, good responders to one agent were not necessarily good responders to the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the endocrine and renal effects of the dual inhibitor of angiotensin converting enzyme and neutral endopeptidase, MDL 100,240. DESIGN: A randomized, placebo-controlled, crossover study was performed in 12 healthy volunteers. METHODS: MDL 100,240 was administered intravenously over 20 min at single doses of 6.25 and 25 mg in subjects with a sodium intake of 280 (n = 6) or 80 (n = 6) mmol/day. Measurements were taken of supine and standing blood pressure, plasma angiotensin converting enzyme activity, angiotensin II, atrial natriuretic peptide, urinary atrial natriuretic peptide and cyclic GMP excretion, effective renal plasma flow and the glomerular filtration rate as p-aminohippurate and inulin clearances, electrolytes and segmental tubular function by endogenous lithium clearance. RESULTS: Supine systolic blood pressure was consistently decreased by MDL 100,240, particularly after the high dose and during the low-salt intake. Diastolic blood pressure and heart rate did not change. Plasma angiotensin converting enzyme activity decreased rapidly and dose-dependently. In both the high- and the low-salt treatment groups, plasma angiotensin II levels fell and renin activity rose accordingly, while plasma atrial natriuretic peptide levels remained unchanged. In contrast, urinary atrial natriuretic peptide excretion increased dose-dependently under both diets, as did urinary cyclic GMP excretion. Effective renal plasma flow and the glomerular filtration rate did not change. The urinary flow rate increased markedly during the first 2 h following administration of either dose of MDL 100,240 (P < 0.001) and, similarly, sodium excretion tended to increase from 0 to 4 h after the dose (P = 0.07). Potassium excretion remained stable. Proximal and distal fractional sodium reabsorption were not significantly altered by the treatment. Uric acid excretion was increased. The safety and clinical tolerance of MDL 100,240 were good. CONCLUSIONS: The increased fall in blood pressure in normal volunteers together with the preservation of renal hemodynamics and the increased urinary volume, atrial natriuretic peptide and cyclic GMP excretion distinguish MDL 100,240 as a double-enzyme inhibitor from inhibitors of the angiotensin converting enzyme alone. The differences appear to be due, at least in part, to increased renal exposure to atrial natriuretic peptide following neutral endopeptidase blockade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharides (LPS, endotoxins) are main constituents of the outer membranes of Gram-negative bacteria, with the 'endotoxic principle' lipid A anchoring LPS into the membrane. When LPS is removed from the bacteria by the action of the immune system or simply by cell dividing, it may interact strongly with immunocompetent cells such as mononuclear cells. This interaction may lead, depending on the LPS concentration, to beneficial (at low) or pathophysiological (at high concentrations) reactions, the latter frequently causing the septic shock syndrome. There is a variety of endogenous LPS-binding proteins. To this class belong lactoferrin (LF) and hemoglobin (Hb), which have been shown to suppress and enhance the LPS-induced cytokine secretion in mononuclear cells, respectively. To elucidate the interaction mechanisms of endotoxins with these proteins, we have investigated in an infrared reflection-absorption spectroscopy (IRRAS) study the interaction of LPS or lipid A monolayers at the air/water interface with LF and Hb proteins, injected into the aqueous subphase. The data are clearly indicative of completely different interaction mechanisms of the endotoxins with the proteins, with the LF acting only at the LPS backbone, whereas Hb incorporates into the lipid monolayer. These data allow an understanding of the different reactivities in the biomedicinal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Mutations in the ligand-binding domain (LBD) of NR2E3 cause recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS), Goldmann-Favre syndrome (GFS) and clumped pigmentary retinal degeneration (CPRD). In addition to ligand binding, the LBD contains also essential amino acid sequences for the oligomerization of nuclear receptors. The aim of our studies is to characterize the impact of mutations in the LBD on receptor oligomerization and transcriptional activity of NR2E3. Methods: The different NR2E3 mutants were generated by QuickChange mutagenesis and analyzed in 293T-based transactivation studies and BRET2 (bioluminescence resonance electron transfer) assays. In silico homology modeling of mutant proteins was also performed using available crystallographic data of related nuclear receptors. Results: The mutants p.W234S, p.A256V, p.A256E, p.L263P, p.R309G, p.R311Q, p.R334G, p.L336P, p.L353V, p.R385P and p.M407K, all located in the LBD, showed impaired receptor dimerization at various degrees. Impaired repressor dimerization as assessed by BRET2 assays did not always correlate with impaired repressor function of NR2E3 as assessed by cell-based reporter assays. There were minor differences of transcriptional activity of mutant proteins on mouse S-opsin (opn1sw), mouse cone arrestin (arr3) and human cone arrestin, suggesting that the effect of LBD mutations was independent of the promoter context. Conclusions: Mutational analysis and homology modeling allowed the characterization of potential oligomerization interfaces of the NR2E3 LBD. Additionally, mutations in NR2E3 LBD may cause recessive retinal degenerations by different molecular mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis is critically dependent on the presence of the ced-3 gene in Caenorhabditis elegans, which encodes a protein homologous to the mammalian interleukin (IL)-1 beta-converting enzyme (ICE). Overexpression of ICE or ced-3 promotes apoptosis. Cytotoxic T lymphocyte-mediated rapid apoptosis is induced by the proteases granzyme A and B. ICE and granzyme B share the rare substrate site of aspartic acid, after which amino acid cleavage of precursor IL-1 beta (pIL-1 beta) occurs. Here we show that granzyme A, but not granzyme B, converts pIL-1 beta to its 17-kD mature form. Major cleavage occurs at Arg120, four amino acids downstream of the authentic processing site, Asp116. IL-1 beta generated by granzyme A is biologically active. When pIL-1 beta processing is monitored in lipopolysaccharide-activated macrophage target cells attacked by cytotoxic T lymphocytes, intracellular conversion precedes lysis. Prior granzyme inactivation blocks this processing. We conclude that the apoptosis-inducing granzyme A and ICE share at least one downstream target substrate, i.e., pIL-1 beta. This suggests that lymphocytes, by means of their own converting enzyme, could initiate a local inflammatory response independent of the presence of ICE.