195 resultados para spatial visualisation
Resumo:
Experiments were designed to examine some properties of spatial representations in rats. Adult subjects were trained to escape through a hole at a fixed position in a large circular arena (see Schenk 1989). The experiments were conducted in the dark, with a limited number of controlled visual light cues in order to assess the minimal cue requirement for place learning. Three identical light cues (shape, height and distance from the table) were used. Depending on the condition, they were either permanently on, or alternatively on or off, depending on the position of the rat in the field. Two questions were asked: a) how many identical visual cues were necessary for spatial discrimination in the dark, and b) could rats integrate the relative positions of separate cues, under conditions in which the rat was never allowed to perceive all three cues simultaneously. The results suggest that rats are able to achieve a place discrimination task even if the three cues necessary for efficient orientation can never be seen simultaneously. A dissociation between the discrimination of the spatial position of the goal and the capacity to reach it by a direct path suggests that a reduced number of cues might require prolonged locomotion to allow an accurate orientation in the environment.
Resumo:
Spatial data on species distributions are available in two main forms, point locations and distribution maps (polygon ranges and grids). The first are often temporally and spatially biased, and too discontinuous, to be useful (untransformed) in spatial analyses. A variety of modelling approaches are used to transform point locations into maps. We discuss the attributes that point location data and distribution maps must satisfy in order to be useful in conservation planning. We recommend that before point location data are used to produce and/or evaluate distribution models, the dataset should be assessed under a set of criteria, including sample size, age of data, environmental/geographical coverage, independence, accuracy, time relevance and (often forgotten) representation of areas of permanent and natural presence of the species. Distribution maps must satisfy additional attributes if used for conservation analyses and strategies, including minimizing commission and omission errors, credibility of the source/assessors and availability for public screening. We review currently available databases for mammals globally and show that they are highly variable in complying with these attributes. The heterogeneity and weakness of spatial data seriously constrain their utility to global and also sub-global scale conservation analyses.
Resumo:
Question Does a land-use variable improve spatial predictions of plant species presence-absence and abundance models at the regional scale in a mountain landscape? Location Western Swiss Alps. Methods Presence-absence generalized linear models (GLM) and abundance ordinal logistic regression models (LRM) were fitted to data on 78 mountain plant species, with topo-climatic and/or land-use variables available at a 25-m resolution. The additional contribution of land use when added to topo-climatic models was evaluated by: (1) assessing the changes in model fit and (2) predictive power, (3) partitioning the deviance respectively explained by the topo-climatic variables and the land-use variable through variation partitioning, and (5) comparing spatial projections. Results Land use significantly improved the fit of presence-absence models but not their predictive power. In contrast, land use significantly improved both the fit and predictive power of abundance models. Variation partitioning also showed that the individual contribution of land use to the deviance explained by presence-absence models was, on average, weak for both GLM and LRM (3.7% and 4.5%, respectively), but changes in spatial projections could nevertheless be important for some species. Conclusions In this mountain area and at our regional scale, land use is important for predicting abundance, but not presence-absence. The importance of adding land-use information depends on the species considered. Even without a marked effect on model fit and predictive performance, adding land use can affect spatial projections of both presence-absence and abundance models.
Resumo:
BACKGROUND: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether BMI clusters among children and how age-specific BMI clusters are related remains unknown. We aimed to identify and compare the spatial dependence of BMI in adults and children in a Swiss general population, taking into account the area's income level. METHODS: Geo-referenced data from the Bus Santé study (adults, n=6663) and Geneva School Health Service (children, n=3601) were used. We implemented global (Moran's I) and local (local indicators of spatial association (LISA)) indices of spatial autocorrelation to investigate the spatial dependence of BMI in adults (35-74 years) and children (6-7 years). Weight and height were measured using standardized procedures. Five spatial autocorrelation classes (LISA clusters) were defined including the high-high BMI class (high BMI participant's BMI value correlated with high BMI-neighbors' mean BMI values). The spatial distributions of clusters were compared between adults and children with and without adjustment for area's income level. RESULTS: In both adults and children, BMI was clearly not distributed at random across the State of Geneva. Both adults' and children's BMIs were associated with the mean BMI of their neighborhood. We found that the clusters of higher BMI in adults and children are located in close, yet different, areas of the state. Significant clusters of high versus low BMIs were clearly identified in both adults and children. Area's income level was associated with children's BMI clusters. CONCLUSIONS: BMI clusters show a specific spatial dependence in adults and children from the general population. Using a fine-scale spatial analytic approach, we identified life course-specific clusters that could guide tailored interventions.
Resumo:
An adaptation technique based on the synoptic atmospheric circulation to forecast local precipitation, namely the analogue method, has been implemented for the western Swiss Alps. During the calibration procedure, relevance maps were established for the geopotential height data. These maps highlight the locations were the synoptic circulation was found of interest for the precipitation forecasting at two rain gauge stations (Binn and Les Marécottes) that are located both in the alpine Rhône catchment, at a distance of about 100 km from each other. These two stations are sensitive to different atmospheric circulations. We have observed that the most relevant data for the analogue method can be found where specific atmospheric circulation patterns appear concomitantly with heavy precipitation events. Those skilled regions are coherent with the atmospheric flows illustrated, for example, by means of the back trajectories of air masses. Indeed, the circulation recurrently diverges from the climatology during days with strong precipitation on the southern part of the alpine Rhône catchment. We have found that for over 152 days with precipitation amount above 50 mm at the Binn station, only 3 did not show a trajectory of a southerly flow, meaning that such a circulation was present for 98% of the events. Time evolution of the relevance maps confirms that the atmospheric circulation variables have significantly better forecasting skills close to the precipitation period, and that it seems pointless for the analogue method to consider circulation information days before a precipitation event as a primary predictor. Even though the occurrence of some critical circulation patterns leading to heavy precipitation events can be detected by precursors at remote locations and 1 week ahead (Grazzini, 2007; Martius et al., 2008), time extrapolation by the analogue method seems to be rather poor. This would suggest, in accordance with previous studies (Obled et al., 2002; Bontron and Obled, 2005), that time extrapolation should be done by the Global Circulation Model, which can process atmospheric variables that can be used by the adaptation method.
Resumo:
Different spatial representations are not stored as a single multipurpose map in the brain. Right brain-damaged patients can show a distortion, a compression of peripersonal and extrapersonal space. Here we report the case of a patient with a right insulo-thalamic disconnection without spatial neglect. The patient, compared with 10 healthy control subjects, showed a constant and reliable increase of her peripersonal and extrapersonal egocentric space representations - that we named spatial hyperschematia - yet left her allocentric space representations intact. This striking dissociation shows that our interactions with the surrounding world are represented and processed modularly in the human brain, depending on their frame of reference.
Resumo:
We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.
Resumo:
Left unilateral spatial neglect resulting from right brain damage is characterized by loss of awareness for stimuli in the contralesional side of space, despite intact visual pathways. We examined using fMRI whether patients with neglect are more likely to consciously detect in the neglected hemifield, emotionally negative complex scenes rather than visually similar neutral pictures and if so, what neural mechanisms mediate this effect. Photographs of emotional and neutral scenes taken from the IAPS were presented in a divided visual field paradigm. As expected, the detection rate for emotional stimuli presented in the neglected field was higher than for neutral ones. Successful detection of emotional scenes as opposed to neutral stimuli in the left visual field (LVF) produced activations in the parahippocampal and anterior cingulate areas in the right hemisphere. Detection of emotional stimuli presented in the intact right visual field (RVF) activated a distributed network of structures in the left hemisphere, including anterior and posterior cingulate cortex, insula, as well as visual striate and extrastriate areas. LVF-RVF contrasts for emotional stimuli revealed activations in right and left attention related prefrontal areas whereas RVF-LVF comparison showed activations in the posterior cingulate and extrastriate visual cortex in the left hemisphere. An additional analysis contrasting detected vs. undetected emotional LVF stimuli showed involvement of left anterior cingulate, right frontal and extrastriate areas. We hypothesize that beneficial role of emotion in overcoming neglect is achieved by activation of frontal and limbic lobe networks, which provide a privileged access of emotional stimuli to attention by top-down modulation of processing in the higher-order extrastriate visual areas. Our results point to the importance of top-down regulatory role of the frontal attentional systems, which might enhance visual activations and lead to greater salience of emotional stimuli for perceptual awareness.
Resumo:
The aim of the present study was to determine whether and how rats can use local olfactory cues for spatial orientation. Rats were trained in an eight-arm radial maze under different conditions as defined by the presence or absence of supplementary olfactory cues marking each arm, the availability of distant visuospatial information, and the illumination of the maze (light or darkness). The different visual conditions were designed to dissociate among the effects of light per se and those of visuospatial cues, on the use of olfactory cues for accurate arm choice. Different procedures with modifications of the arrangement of olfactory cues were used to determine if rats formed a representation of the spatial configuration of the olfactory cues and if they could rely on such a representation for accurate arm choice in the radial maze. The present study demonstrated that the use of olfactory cues to direct arm choice in the radial arm maze was critically dependent on the illumination conditions and implied two different modes of processing of olfactory information according to the presence or the absence of light. Olfactory cues were used in an explicit manner and enabled accurate arm choice only in the absence of light. Rats, however, had an implicit memory of the location of the olfactory cues and formed a representation of the spatial position of these cues, whatever the lighting conditions. They did not memorize the spatial configuration of the olfactory cues per se but needed these cues to be linked to the external spatial frame of reference.
Resumo:
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D(2), +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Resumo:
Introduction: The interhemispheric asymmetries that originate from connectivity-related structuring of the cerebral cortex are compromised in schizophrenia (SZ). Recently, we have revealed the whole-head topography of EEG synchronization in SZ (Jalili et al. 2007; Knyazeva et al. 2008). Here we extended the analysis to assess the abnormality in the asymmetry of synchronization, which is further motivated by the evidence that the interhemispheric asymmetries suspected to be abnormal in SZ originate from the connectivity-related structuring of the cortex. Methods: Thirteen right-handed SZ patients and thirteen matched controls, participated in this study and the multichannel (128) EEGs were recorded for 3-5 minutes at rest. Then, Laplacian EEG (LEEG) were calculated using a 2-D spline. The LEEGs were analysis through calculating the power spectral density using Welch's average periodogram method. Furthermore, using a state-space based multivariate synchronization measure, S-estimator, we analyzed the correlate of the functional cortico-cortical connectivity in SZ patients compared to the controls. The values of S-estimator were obtained at three different special scales: first-order neighbors for each sensor location, second-order neighbors, and the whole hemisphere. The synchronization measures based on LEEG of alpha and beta bands were applied and tuned to various spatial scales including local, intraregional, and long-distance levels. To assess the between-group differences, we used a permutation version of Hotelling's T2 test. For correlation analysis, Spearman Rank Correlation was calculated. Results: Compared to the controls, who had rightward asymmetry at a local level (LEEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (first- and second-order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization. This deviation in asymmetry across the anterior-to-posterior axis is consistent with the cerebral form of the so-called Yakovlevian or anticlockwise cerebral torque. Moreover, the negative occipital and positive frontal asymmetry values suggest higher regional synchronization among the left occipital and the right frontal locations relative to their symmetrical counterparts. Correlation analysis linked the posterior intraregional and hemispheric abnormalities to the negative SZ symptoms, whereas the asymmetry of LEEG power appeared to be weakly coupled to clinical ratings. The posterior intraregional abnormalities of asymmetry were shown to increase with the duration of the disease. The tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern in normal subjects and SZ patients, are discussed. Conclusions: Overall, our findings reveal the abnormalities in the synchronization asymmetry in SZ patients and heavy involvement of the right hemisphere in these abnormalities. These results indicate that anomalous asymmetry of cortico-cortical connections in schizophrenia is amenable to electrophysiological analysis.
Resumo:
This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.