211 resultados para spatial error
Resumo:
Aim This study compares the direct, macroecological approach (MEM) for modelling species richness (SR) with the more recent approach of stacking predictions from individual species distributions (S-SDM). We implemented both approaches on the same dataset and discuss their respective theoretical assumptions, strengths and drawbacks. We also tested how both approaches performed in reproducing observed patterns of SR along an elevational gradient.Location Two study areas in the Alps of Switzerland.Methods We implemented MEM by relating the species counts to environmental predictors with statistical models, assuming a Poisson distribution. S-SDM was implemented by modelling each species distribution individually and then stacking the obtained prediction maps in three different ways - summing binary predictions, summing random draws of binomial trials and summing predicted probabilities - to obtain a final species count.Results The direct MEM approach yields nearly unbiased predictions centred around the observed mean values, but with a lower correlation between predictions and observations, than that achieved by the S-SDM approaches. This method also cannot provide any information on species identity and, thus, community composition. It does, however, accurately reproduce the hump-shaped pattern of SR observed along the elevational gradient. The S-SDM approach summing binary maps can predict individual species and thus communities, but tends to overpredict SR. The two other S-SDM approaches the summed binomial trials based on predicted probabilities and summed predicted probabilities - do not overpredict richness, but they predict many competing end points of assembly or they lose the individual species predictions, respectively. Furthermore, all S-SDM approaches fail to appropriately reproduce the observed hump-shaped patterns of SR along the elevational gradient.Main conclusions Macroecological approach and S-SDM have complementary strengths. We suggest that both could be used in combination to obtain better SR predictions by following the suggestion of constraining S-SDM by MEM predictions.
Resumo:
Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.
Resumo:
Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.
Resumo:
Experiments were designed to examine some properties of spatial representations in rats. Adult subjects were trained to escape through a hole at a fixed position in a large circular arena (see Schenk 1989). The experiments were conducted in the dark, with a limited number of controlled visual light cues in order to assess the minimal cue requirement for place learning. Three identical light cues (shape, height and distance from the table) were used. Depending on the condition, they were either permanently on, or alternatively on or off, depending on the position of the rat in the field. Two questions were asked: a) how many identical visual cues were necessary for spatial discrimination in the dark, and b) could rats integrate the relative positions of separate cues, under conditions in which the rat was never allowed to perceive all three cues simultaneously. The results suggest that rats are able to achieve a place discrimination task even if the three cues necessary for efficient orientation can never be seen simultaneously. A dissociation between the discrimination of the spatial position of the goal and the capacity to reach it by a direct path suggests that a reduced number of cues might require prolonged locomotion to allow an accurate orientation in the environment.
Resumo:
Spatial data on species distributions are available in two main forms, point locations and distribution maps (polygon ranges and grids). The first are often temporally and spatially biased, and too discontinuous, to be useful (untransformed) in spatial analyses. A variety of modelling approaches are used to transform point locations into maps. We discuss the attributes that point location data and distribution maps must satisfy in order to be useful in conservation planning. We recommend that before point location data are used to produce and/or evaluate distribution models, the dataset should be assessed under a set of criteria, including sample size, age of data, environmental/geographical coverage, independence, accuracy, time relevance and (often forgotten) representation of areas of permanent and natural presence of the species. Distribution maps must satisfy additional attributes if used for conservation analyses and strategies, including minimizing commission and omission errors, credibility of the source/assessors and availability for public screening. We review currently available databases for mammals globally and show that they are highly variable in complying with these attributes. The heterogeneity and weakness of spatial data seriously constrain their utility to global and also sub-global scale conservation analyses.
Resumo:
We want to shed some light on the development of person mobility by analysing the repeated cross-sectional data of the four National Travel Surveys (NTS) that were conducted in Germany since the mid seventies. The above mentioned driving forces operate on different levels of the system that generates the spatial behaviour we observe: Travel demand is derived from the needs and desires of individuals to participate in spatially separated activities. Individuals organise their lives in an interactive process within the context they live in, using given infrastructure. Essential determinants of their demand are the individual's socio-demographic characteristics, but also the opportunities and constraints defined by the household and the environment are relevant for the behaviour which ultimately can be realised. In order to fully capture the context which determines individual behaviour, the (nested) hierarchy of persons within households within spatial settings has to be considered. The data we will use for our analysis contains information on these three levels. With the analysis of this micro-data we attempt to improve our understanding of the afore subsumed macro developments. In addition we will investigate the prediction power of a few classic sociodemographic variables for the daily travel distance of individuals in the four NTS data sets, with a focus on the evolution of this predictive power. The additional task to correctly measure distances travelled by means of the NTS is threatened by the fact that although these surveys measure the same variables, different sampling designs and data collection procedures were used. So the aim of the analysis is also to detect variables whose control corrects for the known measurement error, as a prerequisite to apply appropriate models in order to better understand the development of individual travel behaviour in a multilevel context. This task is complicated by the fact that variables that inform on survey procedures and outcomes are only provided with the data set for 2002 (see Infas and DIW Berlin, 2003).
Resumo:
Question Does a land-use variable improve spatial predictions of plant species presence-absence and abundance models at the regional scale in a mountain landscape? Location Western Swiss Alps. Methods Presence-absence generalized linear models (GLM) and abundance ordinal logistic regression models (LRM) were fitted to data on 78 mountain plant species, with topo-climatic and/or land-use variables available at a 25-m resolution. The additional contribution of land use when added to topo-climatic models was evaluated by: (1) assessing the changes in model fit and (2) predictive power, (3) partitioning the deviance respectively explained by the topo-climatic variables and the land-use variable through variation partitioning, and (5) comparing spatial projections. Results Land use significantly improved the fit of presence-absence models but not their predictive power. In contrast, land use significantly improved both the fit and predictive power of abundance models. Variation partitioning also showed that the individual contribution of land use to the deviance explained by presence-absence models was, on average, weak for both GLM and LRM (3.7% and 4.5%, respectively), but changes in spatial projections could nevertheless be important for some species. Conclusions In this mountain area and at our regional scale, land use is important for predicting abundance, but not presence-absence. The importance of adding land-use information depends on the species considered. Even without a marked effect on model fit and predictive performance, adding land use can affect spatial projections of both presence-absence and abundance models.
Resumo:
BACKGROUND: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether BMI clusters among children and how age-specific BMI clusters are related remains unknown. We aimed to identify and compare the spatial dependence of BMI in adults and children in a Swiss general population, taking into account the area's income level. METHODS: Geo-referenced data from the Bus Santé study (adults, n=6663) and Geneva School Health Service (children, n=3601) were used. We implemented global (Moran's I) and local (local indicators of spatial association (LISA)) indices of spatial autocorrelation to investigate the spatial dependence of BMI in adults (35-74 years) and children (6-7 years). Weight and height were measured using standardized procedures. Five spatial autocorrelation classes (LISA clusters) were defined including the high-high BMI class (high BMI participant's BMI value correlated with high BMI-neighbors' mean BMI values). The spatial distributions of clusters were compared between adults and children with and without adjustment for area's income level. RESULTS: In both adults and children, BMI was clearly not distributed at random across the State of Geneva. Both adults' and children's BMIs were associated with the mean BMI of their neighborhood. We found that the clusters of higher BMI in adults and children are located in close, yet different, areas of the state. Significant clusters of high versus low BMIs were clearly identified in both adults and children. Area's income level was associated with children's BMI clusters. CONCLUSIONS: BMI clusters show a specific spatial dependence in adults and children from the general population. Using a fine-scale spatial analytic approach, we identified life course-specific clusters that could guide tailored interventions.
Resumo:
Path integration is known to provide information to keep track of spatial location. Surprisingly, few investigations concerning sex differences in computation of the traveling distance have been done. This work was aimed at analyzing the reproduction of both passive and active linear displacements in women and men. To this end, the displacement of blindfolded subjects was done in a wheelchair, then on foot, three times in each condition for a fixed distance. Copies of passive and active traveling distance, distance estimations and pointing responses towards the starting point were analyzed. In passive condition and comparatively to men, women error was larger. Whereas traveling distance was generally underestimated in women, it was overestimated in men. In active condition, no sex differences were observed. When blindfolded subjects have to estimate the traveling distance, the female error was larger than the male one. But, when subjects were asked to indicate the visual cue corresponding to the traveling distance, the male error was larger than the female one. Finally, pointing to the starting point (0°) after a whole-body rotation showed a larger deviation from 0° in men than in women. These results suggest that sex of the subjects influence brain computation of path integration information.
Resumo:
Abstract. Terrestrial laser scanning (TLS) is one of the most promising surveying techniques for rockslope characteriza- tion and monitoring. Landslide and rockfall movements can be detected by means of comparison of sequential scans. One of the most pressing challenges of natural hazards is com- bined temporal and spatial prediction of rockfall. An outdoor experiment was performed to ascertain whether the TLS in- strumental error is small enough to enable detection of pre- cursory displacements of millimetric magnitude. This con- sists of a known displacement of three objects relative to a stable surface. Results show that millimetric changes cannot be detected by the analysis of the unprocessed datasets. Dis- placement measurement are improved considerably by ap- plying Nearest Neighbour (NN) averaging, which reduces the error (1σ ) up to a factor of 6. This technique was ap- plied to displacements prior to the April 2007 rockfall event at Castellfollit de la Roca, Spain. The maximum precursory displacement measured was 45 mm, approximately 2.5 times the standard deviation of the model comparison, hampering the distinction between actual displacement and instrumen- tal error using conventional methodologies. Encouragingly, the precursory displacement was clearly detected by apply- ing the NN averaging method. These results show that mil- limetric displacements prior to failure can be detected using TLS.
Resumo:
An adaptation technique based on the synoptic atmospheric circulation to forecast local precipitation, namely the analogue method, has been implemented for the western Swiss Alps. During the calibration procedure, relevance maps were established for the geopotential height data. These maps highlight the locations were the synoptic circulation was found of interest for the precipitation forecasting at two rain gauge stations (Binn and Les Marécottes) that are located both in the alpine Rhône catchment, at a distance of about 100 km from each other. These two stations are sensitive to different atmospheric circulations. We have observed that the most relevant data for the analogue method can be found where specific atmospheric circulation patterns appear concomitantly with heavy precipitation events. Those skilled regions are coherent with the atmospheric flows illustrated, for example, by means of the back trajectories of air masses. Indeed, the circulation recurrently diverges from the climatology during days with strong precipitation on the southern part of the alpine Rhône catchment. We have found that for over 152 days with precipitation amount above 50 mm at the Binn station, only 3 did not show a trajectory of a southerly flow, meaning that such a circulation was present for 98% of the events. Time evolution of the relevance maps confirms that the atmospheric circulation variables have significantly better forecasting skills close to the precipitation period, and that it seems pointless for the analogue method to consider circulation information days before a precipitation event as a primary predictor. Even though the occurrence of some critical circulation patterns leading to heavy precipitation events can be detected by precursors at remote locations and 1 week ahead (Grazzini, 2007; Martius et al., 2008), time extrapolation by the analogue method seems to be rather poor. This would suggest, in accordance with previous studies (Obled et al., 2002; Bontron and Obled, 2005), that time extrapolation should be done by the Global Circulation Model, which can process atmospheric variables that can be used by the adaptation method.
Resumo:
Different spatial representations are not stored as a single multipurpose map in the brain. Right brain-damaged patients can show a distortion, a compression of peripersonal and extrapersonal space. Here we report the case of a patient with a right insulo-thalamic disconnection without spatial neglect. The patient, compared with 10 healthy control subjects, showed a constant and reliable increase of her peripersonal and extrapersonal egocentric space representations - that we named spatial hyperschematia - yet left her allocentric space representations intact. This striking dissociation shows that our interactions with the surrounding world are represented and processed modularly in the human brain, depending on their frame of reference.
Resumo:
We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.