130 resultados para simple algorithms
Resumo:
The n-octanol/water partition coefficient (log Po/w) is a key physicochemical parameter for drug discovery, design, and development. Here, we present a physics-based approach that shows a strong linear correlation between the computed solvation free energy in implicit solvents and the experimental log Po/w on a cleansed data set of more than 17,500 molecules. After internal validation by five-fold cross-validation and data randomization, the predictive power of the most interesting multiple linear model, based on two GB/SA parameters solely, was tested on two different external sets of molecules. On the Martel druglike test set, the predictive power of the best model (N = 706, r = 0.64, MAE = 1.18, and RMSE = 1.40) is similar to six well-established empirical methods. On the 17-drug test set, our model outperformed all compared empirical methodologies (N = 17, r = 0.94, MAE = 0.38, and RMSE = 0.52). The physical basis of our original GB/SA approach together with its predictive capacity, computational efficiency (1 to 2 s per molecule), and tridimensional molecular graphics capability lay the foundations for a promising predictor, the implicit log P method (iLOGP), to complement the portfolio of drug design tools developed and provided by the SIB Swiss Institute of Bioinformatics.
Resumo:
PURPOSE: The prognostic impact of complete response (CR) achievement in multiple myeloma (MM) has been shown mostly in the context of autologous stem-cell transplantation. Other levels of response have been defined because, even with high-dose therapy, CR is a relatively rare event. The purpose of this study was to analyze the prognostic impact of very good partial response (VGPR) in patients treated with high-dose therapy. PATIENTS AND METHODS: All patients were included in the Intergroupe Francophone du Myelome 99-02 and 99-04 trials and treated with vincristine, doxorubicin, and dexamethasone (VAD) induction therapy followed by double autologous stem-cell transplantation (ASCT). Best post-ASCT response assessment was available for 802 patients. RESULTS: With a median follow-up of 67 months, median event-free survival (EFS) and 5-year EFS were 42 months and 34%, respectively, for 405 patients who achieved at least VGPR after ASCT versus 32 months and 26% in 288 patients who achieved only partial remission (P = .005). Five-year overall survival (OS) was significantly superior in patients achieving at least VGPR (74% v 61% P = .0017). In multivariate analysis, achievement of less than VGPR was an independent factor predicting shorter EFS and OS. Response to VAD had no impact on EFS and OS. The impact of VGPR achievement on EFS and OS was significant in patients with International Staging System stages 2 to 3 and for patients with poor-risk cytogenetics t(4;14) or del(17p). CONCLUSION: In the context of ASCT, achievement of at least VGPR is a simple prognostic factor that has importance in intermediate and high-risk MM and can be informative in more patients than CR.
Resumo:
n the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.
Resumo:
PURPOSE: To report a series of patients with cerebellar dysfunction and altered vision during motion, and to quantify their visual impairment in motion with a simple clinical test. METHODS: Twenty consecutive patients suffering from cerebellar dysfunction and altered vision during motion were examined between 1994 and 2007. A control group consisted of 20 age- and sex-matched healthy people. All patients had a full neuro-ophthalmic examination. Near visual acuity (NVA) was measured at rest (static NVA) and during chair rotation (dynamic NVA). Distance visual acuity (DVA) was measured at rest (static DVA) and during rotation of the patient's head (dynamic DVA). RESULTS: Only four of the 20 patients reported altered vision during motion spontaneously. The remaining 16 patients admitted this unusual visual disturbance only when asked specifically. All patients exhibited abnormal eye movements, including saccadic smooth pursuit (20/20), dysmetric saccades (15/20), nystagmus (19/20) and impaired suppression of vestibulo-ocular reflex (VOR) (20/20). During rotation of the examination chair (dynamic NVA), the drop in NVA averaged 5.6 lines (range 1-10 lines). During rotation of the patient's head (dynamic DVA), the drop in DVA averaged only 2.5 lines (range 0-10 lines). For the control group, there was no significant drop in NVA under dynamic conditions. CONCLUSION: Patients with cerebellar dysfunction rarely complain spontaneously of altered vision during motion. However, specific questioning may bring up this unusual symptom. The use of a simple clinical test, consisting of NVA measurement during rotation of the examination chair (dynamic NVA), allows practitioners to quantify the level of visual impairment in patients presenting altered VOR modulation.
Resumo:
Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.
Resumo:
ABSTRACT: BACKGROUND: Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have shown that a patient's antibody reaction in a confirmatory line immunoassay (INNO-LIATM HIV I/II Score, Innogenetics) provides information on the duration of infection. Here, we sought to further investigate the diagnostic specificity of various Inno-Lia algorithms and to identify factors affecting it. METHODS: Plasma samples of 714 selected patients of the Swiss HIV Cohort Study infected for longer than 12 months and representing all viral clades and stages of chronic HIV-1 infection were tested blindly by Inno-Lia and classified as either incident (up to 12 m) or older infection by 24 different algorithms. Of the total, 524 patients received HAART, 308 had HIV-1 RNA below 50 copies/mL, and 620 were infected by a HIV-1 non-B clade. Using logistic regression analysis we evaluated factors that might affect the specificity of these algorithms. RESULTS: HIV-1 RNA <50 copies/mL was associated with significantly lower reactivity to all five HIV-1 antigens of the Inno-Lia and impaired specificity of most algorithms. Among 412 patients either untreated or with HIV-1 RNA ≥50 copies/mL despite HAART, the median specificity of the algorithms was 96.5% (range 92.0-100%). The only factor that significantly promoted false-incident results in this group was age, with false-incident results increasing by a few percent per additional year. HIV-1 clade, HIV-1 RNA, CD4 percentage, sex, disease stage, and testing modalities exhibited no significance. Results were similar among 190 untreated patients. CONCLUSIONS: The specificity of most Inno-Lia algorithms was high and not affected by HIV-1 variability, advanced disease and other factors promoting false-recent results in other STARHS. Specificity should be good in any group of untreated HIV-1 patients.
Resumo:
Phase sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption-based imaging and therefore new and otherwise inaccessible information. The use of gratings as optical elements in hard X-ray phase imaging overcomes some of the problems that have impaired the wider use of phase contrast in X-ray radiography and tomography. So far, to separate the phase information from other contributions detected with a grating interferometer, a phase-stepping approach has been considered, which implies the acquisition of multiple radiographic projections. Here we present an innovative, highly sensitive X-ray tomographic phase-contrast imaging approach based on grating interferometry, which extracts the phase-contrast signal without the need of phase stepping. Compared to the existing phase-stepping approach, the main advantages of this new method dubbed "reverse projection" are not only the significantly reduced delivered dose, without the degradation of the image quality, but also the much higher efficiency. The new technique sets the prerequisites for future fast and low-dose phase-contrast imaging methods, fundamental for imaging biological specimens and in vivo studies.
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
PURPOSE: To determine the lower limit of dose reduction with hybrid and fully iterative reconstruction algorithms in detection of endoleaks and in-stent thrombus of thoracic aorta with computed tomographic (CT) angiography by applying protocols with different tube energies and automated tube current modulation. MATERIALS AND METHODS: The calcification insert of an anthropomorphic cardiac phantom was replaced with an aortic aneurysm model containing a stent, simulated endoleaks, and an intraluminal thrombus. CT was performed at tube energies of 120, 100, and 80 kVp with incrementally increasing noise indexes (NIs) of 16, 25, 34, 43, 52, 61, and 70 and a 2.5-mm section thickness. NI directly controls radiation exposure; a higher NI allows for greater image noise and decreases radiation. Images were reconstructed with filtered back projection (FBP) and hybrid and fully iterative algorithms. Five radiologists independently analyzed lesion conspicuity to assess sensitivity and specificity. Mean attenuation (in Hounsfield units) and standard deviation were measured in the aorta to calculate signal-to-noise ratio (SNR). Attenuation and SNR of different protocols and algorithms were analyzed with analysis of variance or Welch test depending on data distribution. RESULTS: Both sensitivity and specificity were 100% for simulated lesions on images with 2.5-mm section thickness and an NI of 25 (3.45 mGy), 34 (1.83 mGy), or 43 (1.16 mGy) at 120 kVp; an NI of 34 (1.98 mGy), 43 (1.23 mGy), or 61 (0.61 mGy) at 100 kVp; and an NI of 43 (1.46 mGy) or 70 (0.54 mGy) at 80 kVp. SNR values showed similar results. With the fully iterative algorithm, mean attenuation of the aorta decreased significantly in reduced-dose protocols in comparison with control protocols at 100 kVp (311 HU at 16 NI vs 290 HU at 70 NI, P ≤ .0011) and 80 kVp (400 HU at 16 NI vs 369 HU at 70 NI, P ≤ .0007). CONCLUSION: Endoleaks and in-stent thrombus of thoracic aorta were detectable to 1.46 mGy (80 kVp) with FBP, 1.23 mGy (100 kVp) with the hybrid algorithm, and 0.54 mGy (80 kVp) with the fully iterative algorithm.
Resumo:
BACKGROUND: Chest pain can be caused by various conditions, with life-threatening cardiac disease being of greatest concern. Prediction scores to rule out coronary artery disease have been developed for use in emergency settings. We developed and validated a simple prediction rule for use in primary care. METHODS: We conducted a cross-sectional diagnostic study in 74 primary care practices in Germany. Primary care physicians recruited all consecutive patients who presented with chest pain (n = 1249) and recorded symptoms and findings for each patient (derivation cohort). An independent expert panel reviewed follow-up data obtained at six weeks and six months on symptoms, investigations, hospital admissions and medications to determine the presence or absence of coronary artery disease. Adjusted odds ratios of relevant variables were used to develop a prediction rule. We calculated measures of diagnostic accuracy for different cut-off values for the prediction scores using data derived from another prospective primary care study (validation cohort). RESULTS: The prediction rule contained five determinants (age/sex, known vascular disease, patient assumes pain is of cardiac origin, pain is worse during exercise, and pain is not reproducible by palpation), with the score ranging from 0 to 5 points. The area under the curve (receiver operating characteristic curve) was 0.87 (95% confidence interval [CI] 0.83-0.91) for the derivation cohort and 0.90 (95% CI 0.87-0.93) for the validation cohort. The best overall discrimination was with a cut-off value of 3 (positive result 3-5 points; negative result <or= 2 points), which had a sensitivity of 87.1% (95% CI 79.9%-94.2%) and a specificity of 80.8% (77.6%-83.9%). INTERPRETATION: The prediction rule for coronary artery disease in primary care proved to be robust in the validation cohort. It can help to rule out coronary artery disease in patients presenting with chest pain in primary care.
Resumo:
The physiological significance of the presence of GLUT2 at the food-facing pole of intestinal cells is addressed by a study of fructose absorption in GLUT2-null and control mice submitted to different sugar diets. Confocal microscopy localization, protein and mRNA abundance, as well as tissue and membrane vesicle uptakes of fructose were assayed. GLUT2 was located in the basolateral membrane of mice fed a meal devoid of sugar or containing complex carbohydrates. In addition, the ingestion of a simple sugar meal promoted the massive recruitment of GLUT2 to the food-facing membrane. Fructose uptake in brush-border membrane vesicles from GLUT2-null mice was half that of wild-type mice and was similar to the cytochalasin B-insensitive component, i.e. GLUT5-mediated uptake. A 5 day consumption of sugar-rich diets increased fructose uptake fivefold in wild-type tissue rings when it only doubled in GLUT2-null tissue. GLUT5 was estimated to contribute to 100 % of total uptake in wild-type mice fed low-sugar diets, falling to 60 and 40 % with glucose and fructose diets respectively; the complement was ensured by GLUT2 activity. The results indicate that basal sugar uptake is mediated by the resident food-facing SGLT1 and GLUT5 transporters, whose mRNA abundances double in long-term dietary adaptation. We also observe that a large improvement of intestinal absorption is promoted by the transient recruitment of food-facing GLUT2, induced by the ingestion of a simple-sugar meal. Thus, GLUT2 and GLUT5 could exert complementary roles in adapting the absorption capacity of the intestine to occasional or repeated loads of dietary sugars.