64 resultados para sheep breeds
Resumo:
Natural selection favours the genes which are able to introduce replicates of themselves in the next generation with higher certainty than do rival genes (Hamilton 1963). The fitness of an individual, it?s ability to produce future parents, depends on it?s own behaviour as well as on the behaviour of other individuals in the population. For instance, the intensity of competition an individual experience depends on the exploitation of resources by neighbours. The fitness is thus frequency dependent on what neighbours do. Behaviours can be classified according to the costs and benefits they have on the fitness of the behaver and it?s neighbours (Hamilton 1964, Hamilton 1975). According to this classification there exist four distinct social behaviours. (1) A gene confering the ability to use a new ressource is called selfish because it has a positive e_ect on the bearer of the gene but a negative e_ect on neighbours by the concomitant increase in competition. (2) An altruistic behaviour is defined as an action where an individual increases the fitness of a neighbour at the expense of it?s own. The e_ect is deleterious for the actor but positive for the receptor. (3) More surprinsingly, an individual might sacrifice a fraction of it?s ressources to harm another at no direct benefits. This spitefull behaviour incurs a cost for the actor but is also deleterious for the receptor. (4) Finally a cooperative behaviour breeds benefits for both actors and neighbours. In this thesis I will continue on the path traced by numerous evolutionnary biologist which attempt to fine tune our understanding of the evolution of social behaviours since Hamilton?s foundation (1963, 1964). A critical development over the last 40 years has been the realisation that competition between kin can partly or completely cancel out the role of relatedness as an agent favouring altruism (Wilson et al., 1992; Taylor, 1992a,b). Of importance is thus to determine the scale at which competition and altruism occur. One mechanism avoiding the complete dilution of relatedness by competition is the conditionnal expression of the social behaviors. Focus will be given in this thesis at the role played by di_erent recognition mechanism in paving the way to altruism (Komdeur and Hatchwell, 1999) when the population has a spatial structure. Further, the evolution of spite will also be considered in these settings. The thesis is fractionated into two parts. First, di_erent models promoting altruism cooperation and spite will be compared under the same theoretical umbrella. This is a rather informal and more personnal part of my thesis. It also serve as a justification and basis to "Altruism among kin and non-kin individuals" which is an article attempting to clas- sify the mechanisms leading to altruism and cooperation. Second, in the annexe, there are three research papers about kin selection, altruism and dispersal: "Is sociality driven by the costs of dispersal or the benefits of philopatry?: A role for kin-discrimination mechanism", "Altruism, dispersal and phenotype kin recognition" and "Inbreeding avoidance through kin recognition: choosy female boost male dispersal" this last paper incorporates kin recognition as an agent favoring sex-biased dispersal.
Resumo:
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.
Resumo:
Here, we report the culture and characterization of an alphaproteobacterium of the order Rhizobiales, isolated from the gut of the honey bee Apis mellifera. Strain PEB0122T shares >95 % 16S rRNA gene sequence similarity with species of the genus Bartonella, a group of mammalian pathogens transmitted by bloodsucking arthropods. Phylogenetic analyses showed that PEB0122T and related strains from the honey bee gut form a sister clade of the genus Bartonella. Optimal growth of strain PEB0122T was obtained on solid media supplemented with defibrinated sheep blood under microaerophilic conditions at 35-37 °C, which is consistent with the cultural characteristics of other species of the genus Bartonella. Reduced growth of strain PEB0122T also occurred under aerobic conditions. The rod-shaped cells of strain PEB0122T had a mean length of 1.2-1.8 μm and revealed hairy surface structures. Strain PEB0122T was positive for catalase, cytochrome c oxidase, urease and nitrate reductase. The fatty acid composition was comparable to those of other species of the genus Bartonella, with palmitic acid (C16 : 0) and isomers of 18- and 19-carbon chains being the most abundant. The genomic DNA G+C content of PEB0122T was determined to be about 45.5 mol%. The high 16S rRNA gene sequence similarity with species of Bartonella and its close phylogenetic position suggest that strain PEB0122T represents a novel species within the genus Bartonella, for which we propose the name Bartonella apis sp. nov. The type strain is PEB0122T ( = NCIMB 14961T = DSM 29779T).