76 resultados para sensorimotor synchronization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of an explicit handwriting program introduced during the first grade of elementary school. Grade 1 children (N=23) with an age range of 6.1 to 7.4 yr. (15 girls, 8 boys) were administered an additional handwriting program of two weekly sessions of 45 min. over six weeks. Another group of 19 Grade 1 children (11 girls, 8 boys) received only the regular handwriting program of one weekly session. The Concise Assessment Scale for Children's Handwriting was administered to measure the changes in quality and speed of handwriting. The children given the explicit program showed better quality and speed of handwriting than did the control group. Their handwriting was more regular, with fewer ambiguous letters and fewer incorrect relative heights.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gait disorders are frequent and important to assess in older people because they provide unique diagnostic and prognostic information. Gait disorders can be regarded as a marker of frailty because they are associated with several adverse consequences, including falls, cognitive disorders, functional decline, institutionalization, hospitalization, and death. Using structured instruments, gait assessment could be performed in primary care practice to classify the level of sensorimotor deficit and provide the necessary information to decide how to best intervene to improve gait performances, prevent falls as well as functional decline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PN(wm)) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PN(wm) component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PN(wm) area increased with higher memory loads (3- and 2-back > 0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800 ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000 ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger persons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The serotonin-2A receptor (5-HT(2A)R) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT(2A)R or 5-HT(1A)R agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT(2A/2C)R antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT(2A)R stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT(2A)R system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction This dissertation consists of three essays in equilibrium asset pricing. The first chapter studies the asset pricing implications of a general equilibrium model in which real investment is reversible at a cost. Firms face higher costs in contracting than in expanding their capital stock and decide to invest when their productive capital is scarce relative to the overall capital of the economy. Positive shocks to the capital of the firm increase the size of the firm and reduce the value of growth options. As a result, the firm is burdened with more unproductive capital and its value lowers with respect to the accumulated capital. The optimal consumption policy alters the optimal allocation of resources and affects firm's value, generating mean-reverting dynamics for the M/B ratios. The model (1) captures convergence of price-to-book ratios -negative for growth stocks and positive for value stocks - (firm migration), (2) generates deviations from the classic CAPM in line with the cross-sectional variation in expected stock returns and (3) generates a non-monotone relationship between Tobin's q and conditional volatility consistent with the empirical evidence. The second chapter proposes a standard portfolio-choice problem with transaction costs and mean reversion in expected returns. In the presence of transactions costs, no matter how small, arbitrage activity does not necessarily render equal all riskless rates of return. When two such rates follow stochastic processes, it is not optimal immediately to arbitrage out any discrepancy that arises between them. The reason is that immediate arbitrage would induce a definite expenditure of transactions costs whereas, without arbitrage intervention, there exists some, perhaps sufficient, probability that these two interest rates will come back together without any costs having been incurred. Hence, one can surmise that at equilibrium the financial market will permit the coexistence of two riskless rates that are not equal to each other. For analogous reasons, randomly fluctuating expected rates of return on risky assets will be allowed to differ even after correction for risk, leading to important violations of the Capital Asset Pricing Model. The combination of randomness in expected rates of return and proportional transactions costs is a serious blow to existing frictionless pricing models. Finally, in the last chapter I propose a two-countries two-goods general equilibrium economy with uncertainty about the fundamentals' growth rates to study the joint behavior of equity volatilities and correlation at the business cycle frequency. I assume that dividend growth rates jump from one state to other, while countries' switches are possibly correlated. The model is solved in closed-form and the analytical expressions for stock prices are reported. When calibrated to the empirical data of United States and United Kingdom, the results show that, given the existing degree of synchronization across these business cycles, the model captures quite well the historical patterns of stock return volatilities. Moreover, I can explain the time behavior of the correlation, but exclusively under the assumption of a global business cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dyskinesias are infrequent presentations in acute stroke (1%). They can be found more frequently as delayed presentations after a stroke, but the prevalence is not available from the literature. The full spectrum of hyper- and hypo-akinetic syndromes has been described, but three main pictures are rather specific of an acute stroke: limb shaking, hemichorea-hemiballism and unilateral asterixis. Besides limb shaking, that seems to reflect a transient diffuse ischemia of the frontosubcortical motor pathway, lesions are described at all levels of the frontosubcortical motor circuit including the sensorimotor frontoparietal cortex, the striatum, the pallidum, the thalamic nuclei, the subthalamic nucleus, the substantia nigra, the cerebellum, the brainstem and their interconnecting pathways, as ischemic or hemorrhagic strokes. The preferentially late development of dyskinesia could reflect the return to a more ancestral motor control level, the most functional possible with the remaining configuration of structures, elaborated by brain plasticity after stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. METHODS: We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. RESULTS: An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). CONCLUSIONS: This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hallmark of aging is the sensorimotor deficit, characterized by an increased reaction time and a reduction of motor abilities. Some mechanisms such as motor inhibition deteriorate with aging because of neuronal density alterations and modifications of connections between brain regions. These deficits may be compensated throughout a recruitment of additional areas. Studies have shown that old adults have increased difficulty in performing bimanual coordination tasks compared with young adults. In contrast, motor switching is poorly documented and is expected to engage increasing resources in the elderly. The present study examines performances and electro-cortical correlates of motor switching in young and elderly adults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amnestic mild cognitive impairment (aMCI) is characterized by memory deficits alone (single-domain, sd-aMCI) or associated with other cognitive disabilities (multi-domain, md-aMCI). The present study assessed the patterns of electroencephalographic (EEG) activity during the encoding and retrieval phases of short-term memory in these two aMCI subtypes, to identify potential functional differences according to the neuropsychological profile. Continuous EEG was recorded in 43 aMCI patients, whose 16 sd-aMCI and 27 md-aMCI, and 36 age-matched controls (EC) during delayed match-to-sample tasks for face and letter stimuli. At encoding, attended stimuli elicited parietal alpha (8-12 Hz) power decrease (desynchronization), whereas distracting stimuli were associated with alpha power increase (synchronization) over right central sites. No difference was observed in parietal alpha desynchronization among the three groups. For attended faces, the alpha synchronization underlying suppression of distracting letters was reduced in both aMCI subgroups, but more severely in md-aMCI cases that differed significantly from EC. At retrieval, the early N250r recognition effect was significantly reduced for faces in md-aMCI as compared to both sd-aMCI and EC. The results suggest a differential alteration of working memory cerebral processes for faces in the two aMCI subtypes, face covert recognition processes being specifically altered in md-aMCI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Investigations were performed to establish if repetitive arm cycling training enhances the antispastic effect of intramuscular botulinum toxin (BTX) injections in postischemic spastic hemiparesis. Effects on cerebral activation were evaluated by functional magnetic resonance imaging (fMRI). METHODS: Eight chronic spastic hemisyndrome patients (49 ± 10 years) after middle cerebral artery infarction (5.5 ± 2.7 years) were investigated. BTX was injected into the affected arm twice, 6 months apart. Spasticity was assessed using the Ashworth Scale and range of motion before and 3 months after BTX injections. Images were analyzed using Brain Voyager QX 1.8, and fMRI signal changes were corrected for multiple comparisons. RESULTS: During passive movements of affected and nonaffected hands, fMRI activity was increased bilaterally in the sensorimotor cortex (MISI), secondary somatosensory areas (SII), and supplementary motor area predominantly in the contralesional hemisphere, compared with the rest. Following repetitive arm cycling, fMRI activity increased further in MISI of the lesioned hemisphere and SII of the contralesional hemisphere. For patients with residual motor activity, treatment-related fMRI activity increases were associated with reduced spasticity; in completely plegic patients, there was no fMRI activity change in SII but increased spasticity after training. CONCLUSION: Increased activity in SII of the contralesional hemisphere and in MISI of the lesioned hemisphere reflect a treatment-induced effect in the paretic arm. It is hypothesized that the increased BOLD activity results from increased afferent information related to the antispastic BTX effect reinforced by training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé La iododeoxyuridine (IdUrd), une fois marqué au 123I ou au 125I, est un agent potentiel pour des thérapies par rayonnements Auger. Cependant, des limitations restreignent son incorporation dans l'ADN. Afin d'augmenter celle-ci, différents groupes ont étudié la fluorodeoxyuridine (FdUrd), qui favorise l'incorporation d'analogue de la thymidine, sans toutefois parvenir à une toxicité associé plus importante. Dans notre approche, 3 lignées cellulaires de glioblastomes humains et une lignée de cancer ovarien ont été utilisées. Nous avons observé, 16 à 24 h après un court pré-traitement à la FdUrd, un fort pourcentage de cellules s'accumulant en phase S. Plus qu'une accumulation, c'était une synchronisation des cellules, celles-ci restant capables d'incorporer la radio-IdIrd et repartant dans le cycle cellulaire. De plus, ces cellules accumulées après un pré-traitement à la FdUrd étaient plus radio-sensibles. Après le même intervalle de 16 à 24 h suivant la FdUrd, les 4 lignées cellulaires ont incorporé des taux plus élevés de radio-IdUrd que sans ce prétraitement. Une corrélation temporelle entre l'accumulation des cellules en phase S et la forte incorporation de radio-IdUrd a ainsi été révélée 16 à 24 h après pré-traitement à la FdUrd. Les expériences de traitement par rayonnements Auger sur les cellules accumulées en phase S ont montré une augmentation significative de l'efficacité thérapeutique de 125I-IdUrd comparé aux cellules non prétraitées à la FdUrd. Une première estimation a permis de déterminer que 100 désintégrations de 125I par cellules étant nécessaires afin d'atteindre l'efficacité thérapeutique. De plus, p53 semble jouer un rôle dans l'induction directe de mort cellulaire après des traitements par rayonnements Auger, comme indiqué par les mesures par FACS d'apoptose et de nécrose 24 et 48 h après le traitement. Concernant les expériences in vivo, nous avons observé une incorporation marquée de la radio-IdUrd dans l'ADN après un pré-traitement à la FdUrd dans un model de carcinomatose ovarienne péritonéale. Une augmentation encore plus importante a été observée après injection intra-tumorale dans des transplants sous-cutanés de glioblastomes sur des souris nues. Ces modèles pourraient être utilisés pour de plus amples études de diffusion de radio-IdUrd et de thérapie par rayonnement Auger. En conclusion, ce travail montre une première application réussie de la FdUrd afin d'accroître l'efficacité de la radio-IdUrd par traitements aux rayonnements Auger. La synchronisation des cellules en phase S combinée avec la forte incorporation de radio-IdUrd dans l'ADN différées après un pré-traitement à la FdUrd ont montré le gain thérapeutique attendu in vitro. De plus, des études in vivo sont tout indiquées après les observations encourageantes d'incorporation de radio-IdUrd dans les models de transplants sous-cutanés de glioblastomes et de tumeurs péritonéales ovariennes. Summary Iododeoxyuridine (IdUrd), labelled with 123I or 125I, could be a potential Auger radiation therapy agent. However, limitations restrict its DNA incorporation in proliferating cells. Therefore, fluorodeoxyuridine (FdUrd), which favours incorporation of thymidine analogues, has been studied by different groups in order to increase radio-IdUrd DNA incorporation, however therapeutic efficacy increase could not be reached. In our approach, 3 human glioblastoma cell lines with different p53 expression and one ovarian cancer line were pre-treated with various FdUrd conditions. We observed a high percentage of cells accumulating in early S phase 16 to 24 h after a short and non-toxic FdUrd pre-treatment. More than an accumulation, this was a synchronization, cells remaining able to incorporate radio-IdUrd and re-entering the cell cycle. Furthermore, the S phase accumulated cells post FdUrd pre-treatment were more radiosensitive. After the same delay of 16 to 24 h post FdUrd pre-treatment, the 4 cell lines were incorporating higher rates of radio-IdUrd compared with untreated cells. A time correlation between S phase accumulation and high radio-IdUrd incorporation was therefore revealed 16 to 24 h post FdUrd pre-treatment. Auger radiation treatment experiments performed on S phase enriched cells showed a significant increase of killing efficacy of 125I-IdUrd compared with cells not pre-treated with FdUrd. A first estimation indicates further that about 100 125I decays were required to reach killing in the targeted cells. Moreover, p53 might play a role on the direct induction of cell death pathways after Auger radiation treatments, as indicated by differential apoptosis and necrosis induction measured by FACS 24 and 48 h after treatment initiation. Concerning in vivo results, we observed a marked DNA incorporation increase of radio-IdUrd after FdUrd pre-treatment in peritoneal carcinomatosis in SCID mice. Even higher incorporation increase was observed after intra-tumoural injection of radio-IdUrd in subcutaneous glioblastoma transplants in nude mice. These tumour models might be further useful for diffusion of radio-IdUrd and Auger radiation therapy studies. In conclusion, these data show a first successful application of thymidine synthesis inhibition able to increase the efficacy of radio-IdUrd Auger radiation treatment. The S phase synchronization combined with a high percentage DNA incorporation of radio-IdUrd delayed post FdUrd pre-treatment provided the expected therapeutic gain in vitro. Further in vivo studies are indicated after the observations of encouraging radio-IdUrd uptake experiments in glioblastoma subcutaneous xenografts and in an ovarian peritoneal carcinomatosis model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: After no research in humans for >40 years, there is renewed interest in using lysergic acid diethylamide (LSD) in clinical psychiatric research and practice. There are no modern studies on the subjective and autonomic effects of LSD, and its endocrine effects are unknown. In animals, LSD disrupts prepulse inhibition (PPI) of the acoustic startle response, and patients with schizophrenia exhibit similar impairments in PPI. However, no data are available on the effects of LSD on PPI in humans. METHODS: In a double-blind, randomized, placebo-controlled, crossover study, LSD (200 μg) and placebo were administered to 16 healthy subjects (8 women, 8 men). Outcome measures included psychometric scales; investigator ratings; PPI of the acoustic startle response; and autonomic, endocrine, and adverse effects. RESULTS: Administration of LSD to healthy subjects produced pronounced alterations in waking consciousness that lasted 12 hours. The predominant effects induced by LSD included visual hallucinations, audiovisual synesthesia, and positively experienced derealization and depersonalization phenomena. Subjective well-being, happiness, closeness to others, openness, and trust were increased by LSD. Compared with placebo, LSD decreased PPI. LSD significantly increased blood pressure, heart rate, body temperature, pupil size, plasma cortisol, prolactin, oxytocin, and epinephrine. Adverse effects produced by LSD completely subsided within 72 hours. No severe acute adverse effects were observed. CONCLUSIONS: In addition to marked hallucinogenic effects, LSD exerts methylenedioxymethamphetamine-like empathogenic mood effects that may be useful in psychotherapy. LSD altered sensorimotor gating in a human model of psychosis, supporting the use of LSD in translational psychiatric research. In a controlled clinical setting, LSD can be used safely, but it produces significant sympathomimetic stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cortical visuomotor network, comprising the medial intraparietal sulcus (mIPS) and the dorsal premotor area (PMd), encodes the sensorimotor transformations required for the on-line control of reaching movements. How information is transmitted between these two regions and which pathways are involved, are less clear. Here, we use a multimodal approach combining repetitive transcranial magnetic stimulation (rTMS) and diffusion tensor imaging (DTI) to investigate whether structural connectivity in the 'reaching' circuit is associated to variations in the ability to control and update a movement. We induced a transient disruption of the neural processes underlying on-line motor adjustments by applying 1Hz rTMS over the mIPS. After the stimulation protocol, participants globally showed a reduction of the number of corrective trajectories during a reaching task that included unexpected visual perturbations. A voxel-based analysis revealed that participants exhibiting higher fractional anisotropy (FA) in the second branch of the superior longitudinal fasciculus (SLF II) suffered less rTMS-induced behavioral impact. These results indicate that the microstructural features of the white matter bundles within the parieto-frontal 'reaching' circuit play a prominent role when action reprogramming is interfered. Moreover, our study suggests that the structural alignment and cohesion of the white matter tracts might be used as a predictor to characterize the extent of motor impairments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circadian clocks are endogenous timers adjusting behaviour and physiology with the solar day. Synchronized circadian clocks improve fitness and are crucial for our physical and mental well-being. Visual and non-visual photoreceptors are responsible for synchronizing circadian clocks to light, but clock-resetting is also achieved by alternating day and night temperatures with only 2-4 °C difference. This temperature sensitivity is remarkable considering that the circadian clock period (~24 h) is largely independent of surrounding ambient temperatures. Here we show that Drosophila Ionotropic Receptor 25a (IR25a) is required for behavioural synchronization to low-amplitude temperature cycles. This channel is expressed in sensory neurons of internal stretch receptors previously implicated in temperature synchronization of the circadian clock. IR25a is required for temperature-synchronized clock protein oscillations in subsets of central clock neurons. Extracellular leg nerve recordings reveal temperature- and IR25a-dependent sensory responses, and IR25a misexpression confers temperature-dependent firing of heterologous neurons. We propose that IR25a is part of an input pathway to the circadian clock that detects small temperature differences. This pathway operates in the absence of known 'hot' and 'cold' sensors in the Drosophila antenna, revealing the existence of novel periphery-to-brain temperature signalling channels.