99 resultados para rna virus
Resumo:
Background and aims: V itamin D is an important modulator o fnumerous c ellular processes, including innate and adaptive immunepathways. A recent large-scale genetic validation study performed withinthe framework of the Swiss Hepatitis C Cohort S tudy has demonstratedan association between t he 1α-hydroxylase promoter single nucleotidepolymorphism CYP27B1-1260 rs10877012 and sustained virologicresponse (SVR) after pegylated interferon-α ( PEG-IFN-α) plus ribavirintreatment of c hronic hepatitis C in patients w ith a p oor-response IL28Bgenotype. This suggests an intrinsic role o f vitamin D signaling in theresponse t o treatment of chronic hepatitis C, especially in patients withlimited sensitivity to IFN-α. In the present study, we investigated theeffect of 1,25-(OH)2 v itamin D3 (calcitriol) alone or in combination withIFN-α on the hepatitis C virus (HCV) life cycle in vitro.Methods: H uh-7.5 cells harboring Con1- or JFH-1-derived HCVreplicons or cell culture-derived HCV were exposed to 0.1-100 nMcalcitriol ± 1 -100 IU/ml IFN-α. The effect on HCV RNA replication andviral particle production was investigated by quantitative r eal-time PCR,immunoblot analyses, and infectivity titration analyses. The expression ofinterferon-stimulated genes (ISGs) and of calcitriol target genes wasassessed by quantitative real-time PCR.Results: Calcitriol had no relevant effect on the viability of Huh-7.5 cells.Calcitriol strongly induced and repressed the expression of the calcitrioltarget genes CYP24A1 and CCNC, respectively, confirming that Huh-7.5cells c an respond to c alcitriol signaling. P hysiological doses of calcitrioldid not significantly a ffect HCV RNA replication or i nfectious particleproduction in vitro, and calcitriol alone h ad no significant effect on theexpression of several ISGs. However, calcitriol in combination with IFN-αsubstantially increased the expression of ISGs compared to IFN-α alone.In addition, calcitriol plus IFN-α s ynergistically inhibited HCV RNAreplication.Conclusions: C alcitriol at physiological concentrations and IFN-α a ctsynergistically on the expression of I SGs and HCV RNA replication i nvitro. Experiments exploring the underlying mechanisms are underway.
Resumo:
BACKGROUND: HIV-1 RNA viral load is a key parameter for reliable treatment monitoring of HIV-1 infection. Accurate HIV-1 RNA quantitation can be impaired by primer and probe sequence polymorphisms as a result of tremendous genetic diversity and ongoing evolution of HIV-1. A novel dual HIV-1 target amplification approach was realized in the quantitative COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 (HIV-1 TaqMan test v2.0) to cope with the high genetic diversity of the virus. OBJECTIVES AND STUDY DESIGN: The performance of the new assay was evaluated for sensitivity, dynamic range, precision, subtype inclusivity, diagnostic and analytical specificity, interfering substances, and correlation with the COBAS AmpliPrep/COBAS TaqMan HIV-1 (HIV-1 TaqMan test v1.0) predecessor test in patients specimens. RESULTS: The new assay demonstrated a sensitivity of 20 copies/mL, a linear measuring range of 20-10,000,000 copies/mL, with a lower limit of quantitation of 20 copies/mL. HIV-1 Group M subtypes and HIV-1 Group O were quantified within +/-0.3 log(10) of the assigned titers. Specificity was 100% in 660 tested specimens, no cross reactivity was found for 15 pathogens nor any interference for endogenous substances or 29 drugs. Good comparability with the predecessor assay was demonstrated in 82 positive patient samples. In selected clinical samples 35/66 specimens were found underquantitated in the predecessor assay; all were quantitated correctly in the new assay. CONCLUSIONS: The dual-target approach for the HIV-1 TaqMan test v2.0 enables superior HIV-1 Group M subtype coverage including HIV-1 Group O detection. Correct quantitation of specimens underquantitated in the HIV-1 TaqMan test v1.0 test was demonstrated.
Resumo:
BACKGROUND & AIMS: Genetic variation in the interleukin 28B (IL28B) gene has been associated with the response to interferon-alfa/ribavirin therapy in hepatitis C virus (HCV) genotype 1-infected patients. The importance of three IL28B single nucleotide polymorphisms (rs8099917, rs12980275 and rs12979860) for HCV genotype 2/3-infected patients is unknown. METHODS: In patients with chronic hepatitis C genotype 2/3 (n=267), IL28B host genotypes (rs8099917, rs12980275 and rs12979860) were analyzed for associations with sustained virologic response (SVR) to antiviral therapy with (pegylated) interferon-alfa and ribavirin and with respect to epidemiological, biochemical, and virological parameters. For comparison, hepatitis C genotype 1 patients (n=378) and healthy controls (n=200) were included. RESULTS: The rs12979860 CC genotype, lower age, and genotype 2 were significantly associated with SVR in HCV genotype 2/3-infected patients (p=0.01, p=0.03 and p=0.03, respectively). No association was observed for rs8099917 and rs12980275. In addition, an SVR in patients with rapid virologic response (RVR) was associated with the rs12979860 CC genotype (p=0.05), while for non-RVR no association was found. Furthermore, a significant association with a higher baseline viral load was observed for all three IL28B genotypes in genotype 1/2/3-infected patients. Finally, increasing frequencies of the rs12979860 CC genotypes were observed in genotype 1- (33.9%), genotype 3- (38.9%), and genotype 2-infected (51.9%) patients in comparison with healthy controls (49.0%) (p<0.01). CONCLUSIONS: In genotype 2/3-infected patients, rs12979860 was significantly associated with SVR. The frequency of the rs12979860 CC genotype is lower in HCV genotype 1 vs. genotype 2/3 patients. All major IL28B genotypes are associated with HCV-RNA concentration.
Resumo:
Superantigens are defined by their ability to stimulate a large fraction of T cells via interaction with the T cell receptor (TCR) V beta domain. Endogenous superantigens, classically termed minor lymphocyte-stimulating (Mls) antigens, were recently identified as products of open reading frames (ORF) in integrated proviral copies of mouse mammary tumor virus (MMTV). We have described an infectious MMTV homologue of the classical endogenous superantigen Mls-1a (Mtv-7). The ORF molecules of both the endogenous Mtv-7 and the infectious MMTV(SW) interact with T cells expressing the TCR V beta 6, 7, 8.1, and 9 domains. Furthermore, the COOH termini of their ORF molecules, thought to confer TCR specificity, are very similar. Since successful transport of MMTV from the site of infection in the gut to the mammary gland depends on a functional immune system, we were interested in determining the early events after and requirements for MMTV infection. We show that MMTV(SW) infection induces a massive response of V beta 6+ CDC4+ T cells, which interact with the viral ORF. Concomitantly, we observed a B cell response and differentiation that depends on both the presence and stimulation of the superantigen-reactive T cells. Furthermore, we show that B cells are the main target of the initial MMTV infection as judged by the presence of the reverse-transcribed viral genome and ORF transcripts. Thus, we suggest that MMTV infection of B cells leads to ORF-mediated B-T cell interaction, which maintains and possibly amplifies viral infection.
Resumo:
We screened 735 HIV-infected patients in Switzerland with unexplained alanine aminotransferase elevation for hepatitis E virus (HEV) immunoglobulin G. Although HEV seroprevalence in this population is low (2.6%), HEV RNA can persist in patients with low CD4 cell counts. Findings suggest chronic HEV infection should be considered as a cause of persistent alanine aminotransferase elevation.
Resumo:
Hepatitis C virus (HCV) is an important human pathogen, persistently infecting more than 170 million individuals worldwide. Studies of the HCV life cycle have become possible with the development of cell culture systems supporting the replication of viral RNA and the production of infectious virus. However, the exact functions of individual proteins, especially of nonstructural protein 4B (NS4B), remain poorly understood. NS4B triggers the formation of specific, vesicular membrane rearrangements, referred to as membranous webs, which have been reported to represent sites of HCV RNA replication. However, the mechanism of vesicle induction is not known. In this study, a panel of 15 mutants carrying substitutions in the highly conserved NS4B C-terminal domain was generated. Five mutations had only a minor effect on replication, but two of them enhanced assembly and release of infectious virus. Ten mutants were replication defective and used for selection of pseudoreversions. Most of the pseudoreversions also localized to the highly conserved NS4B C-terminal domain and were found to restore replication competence upon insertion into the corresponding primary mutant. Importantly, pseudoreversions restoring replication competence also restored heterotypic NS4B self-interaction, which was disrupted by the primary mutation. Finally, electron microscopy analyses of membrane alterations induced by NS4B mutants revealed striking morphological abnormalities, which were restored to wild-type morphology by the corresponding pseudoreversion. These findings demonstrate the important role of the C-terminal domain in NS4B self-interaction and the formation of functional HCV replication complexes.
Resumo:
Isolated primary human cells from different donors vary in their permissiveness-the ability of cells to be infected and sustain the replication of human immunodeficiency virus type 1 (HIV-1). We used replicating HIV-1 and single-cycle lentivirus vectors in a population approach to identify polymorphic steps during viral replication. We found that phytohemagglutinin-stimulated CD4(+) CD45RO(+) CD57(-) T cells from healthy blood donors (n = 128) exhibited a 5.2-log-unit range in virus production. For 20 selected donors representing the spectrum of CD4 T-cell permissiveness, we could attribute up to 42% of the total variance in virus production to entry factors and 48% to postentry steps. Efficacy at key intracellular steps of the replicative cycle (reverse transcription, integration, transcription and splicing, translation, and budding and release) varied from 0.71 to 1.45 log units among donors. However, interindividual differences in transcription efficiency alone accounted for 64 to 83% of the total variance in virus production that was attributable to postentry factors. While vesicular stomatitis virus G protein-mediated fusion was more efficacious than CCR5/CD4 entry, the latter resulted in greater transcriptional activity per proviral copy. The phenotype of provirus transcription was stable over time, indicating that it represents a genetic trait.
Resumo:
A series of mutations, including 5' and 3' deletions, as well as insertions were introduced into the 5' flanking nucleotide sequence of a vaccinia virus late gene. This DNA has been shown previously to contain all the necessary elements for correct regulation of the gene most probably transcribed by the viral RNA polymerase. To facilitate the assays, the mutated DNA was fused to the chloramphenicol acetyltransferase gene and inserted into the genome of live vaccinia virus. The effects of the mutations on expression of the chimeric gene were studied by both enzyme assays and nuclease S1 analysis. The results showed that 5' deletions up to about 15 bp from the putative initiation site of transcription still yielded high levels of gene expression. All mutations, however, that deleted the authentic late mRNA start site, abolished promoter activity.
Resumo:
Alisporivir (Debio-025) is an analogue of cyclosporine A andrepresents the prototype of a new class of non-immunosuppressivecyclophilin inhibitors. In vitro and in vivo studies have shownthat alisporivir inhibits hepatitis C virus (HCV) replication andongoing clinical trials are exploring its therapeutic potential inpatients with chronic hepatitis C. Recent data suggest that theantiviral effect is mediated by inhibition of cyclophilin A whichis an essential host factor in the HCV life cycle. However, alisporiviralso inhibits mitochondrial permeability transition by bindingto cyclophilin D. As HCV is known to affect mitochondrialfunction, we explored the effect of alisporivir on HCV proteinmediatedmitochondrial dysfunction. By the use of inducible celllines, which allow to investigate the effects of HCV polyproteinexpression independent from viral RNA replication and whichrecapitulate the major alterations of mitochondrial bioenergeticsobserved in infectious cell systems, we show that alisporivir preventsHCV protein-mediated cytochrome c redistribution,decrease of cell respiration, collapse of mitochondrial membranepotential, overproduction of reactive oxygen species and mitochondrialcalcium overload. Strikingly, some of the HCV-mediatedmitochondrial dysfunctions could even be rescued byalisporivir. These observations provide new insights into thepathogenesis of HCV-related liver disease and reveal an additionalmechanism of action of alisporivir that is likely beneficialin the treatment of chronic hepatitis C.
Resumo:
A vaccinia virus late gene coding for a major structural polypeptide of 11 kDa was sequenced. Although the 5' flanking gene region is very A+T rich, it shows little homology either to the corresponding region of vaccinia early genes or to consensus sequences characteristic of most eukaryotic genes. Three DNA fragments (100, 200, and 500 base pairs, respectively), derived from the flanking region and including the late gene mRNA start site, were inserted into the coding sequence of the vaccinia virus thymidine kinase (TK) early gene by homologous in vivo recombination. Recombinants were selected on the basis of their TK- phenotype. Cells were infected with the recombinant viruses and RNA was isolated at 1-hr intervals. Transcripts initiating either from the TK early promoter, or from the late gene promoter at its authentic position, or from the translocated late gene promoters within the early gene were detected by nuclease S1 mapping. Early after infection, only transcripts from the TK early promoter were detected. Later in infection, however, transcripts were also initiated from the translocated late promoters. This RNA appeared at the same time and in similar quantities as the RNA from the late promoter at its authentic position. No quantitative differences in promoter efficiency between the 100-, 200-, and 500-base-pair insertions were observed. We conclude that all necessary signals for correct regulation of late-gene expression reside within only 100 base pairs of 5' flanking sequence.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TC-PTP). The aim of this study was to identify novel cellular substrates of the NS3-4A protease and to investigate their role in the life cycle and pathogenesis of HCV. Methods: Cell lines inducibly expressing the NS3-4A protease were analyzed in basal as well as interferon- α -stimulated states by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling strin- gent criteria for potential substrates or products of the NS3-4A protease were further investigated in different experimental sys- tems as well as in liver biopsies from patients with chronic hep- atitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 21 can- didates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a novel cellular substrate of the HCV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a proviral factor involved in viral particle production but not in HCV entry or RNA replica- tion. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of cleavage for GPx8 function are underway. The identification of novel cellular substrates of the HCV NS3-4A protease should yield new insights into the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel angles for therapeutic inter- vention.
The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction.
Resumo:
Alisporivir (Debio-025) is an analogue of cyclosporine A and represents the prototype of a new class of non-immunosuppressive cyclophilin inhibitors. In vitro and in vivo studies have shown that alisporivir inhibits hepatitis C virus (HCV) replication, and ongoing clinical trials are exploring its therapeutic potential in patients with chronic hepatitis C. Recent data suggest that the antiviral effect is mediated by inhibition of cyclophilin A, which is an essential host factor in the HCV life cycle. However, alisporivir also inhibits mitochondrial permeability transition by binding to cyclophilin D. Because HCV is known to affect mitochondrial function, we explored the effect of alisporivir on HCV protein-mediated mitochondrial dysfunction. Through the use of inducible cell lines, which allow to investigate the effects of HCV polyprotein expression independent from viral RNA replication and which recapitulate the major alterations of mitochondrial bioenergetics observed in infectious cell systems, we show that alisporivir prevents HCV protein-mediated decrease of cell respiration, collapse of mitochondrial membrane potential, overproduction of reactive oxygen species and mitochondrial calcium overload. Strikingly, some of the HCV-mediated mitochondrial dysfunctions could even be rescued by alisporivir. Conclusion: These observations provide new insights into the pathogenesis of HCV-related liver disease and reveal an additional mechanism of action of alisporivir that is likely beneficial in the treatment of chronic hepatitis C. (HEPATOLOGY 2012).
Resumo:
A 6008 base pair fragment of the vaccinia virus DNA containing the gene for the precursor of the major core protein 4 a, which has been designated P4 a, was sequenced. A long open reading frame (ORF) encoding a protein of molecular weight 102,157 started close to the position where the P4 a mRNA had been mapped. Analysis of the mRNA by S1 nuclease mapping and primer extension indicated that the 5' end defined by the former method is not the true 5' end. This suggests that the P4 a coding region is preceded by leader sequences that are not derived from the immediate vicinity of the gene, similar to what has been reported for another late vaccinia virus mRNA. The sequenced DNA contained several further ORFs on the same, or opposite DNA strand, providing further evidence for the close spacing of protein-coding sequences in the viral genome.