295 resultados para regulated Function
Resumo:
AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.
Resumo:
It is now widely accepted that adult neurogenesis plays a fundamental role in hippocampal function. Neurons born in the adult dentate gyrus of the hippocampus undergo a series of events before they fully integrate in the network and eventually become undistinguishable from neurons born during embryogenesis. Adult hippocampal neurogenesis is strongly regulated by neuronal activity and neurotransmitters, and the synaptic integration of adult-born neurons occurs in discrete steps, some of which are very different from perinatal synaptogenesis. Here, we review the current knowledge on the development of the synaptic input and output of neurons born in the adult hippocampus, from the stem/progenitor cell to the fully mature neuron. We also provide insight on the regulation of adult neurogenesis by some neurotransmitters and discuss some specificities of the integration of new neurons in an adult environment. The understanding of the mechanisms regulating the synaptic integration of adult-born neurons is not only crucial for our understanding of brain plasticity, but also provides a framework for the manipulation and monitoring of endogenous adult neurogenesis as well as grafted cells, for potential therapeutic applications.
Resumo:
Schwann cells synthesize a large amount of membrane that form a specialized structure called myelin that surrounds axons and facilitate the transmission of electrical signal along neurons in peripheral nervous system (PNS). Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including Sox2, c-Jun, Notch and Pax3, all usually expressed in immature Schwann cells and suppressed at the onset of myelination. In order to identify new regulators of myelination involved in the development of the PNS, we analyzed the gene-expression profiling data from developing PNS and from three models of demyelinating neuropathies. This analysis led to the identification of Sox4, a member of the Sox family of transcription factors, as a potential candidate. To characterize the molecular function of Sox4 in PNS, we generated two transgenic lines of mice, which overexpress Sox4 specifically in Schwann cells. Detailed analysis of these mice showed that the overexpression of Sox4 in Schwann cells causes a delay in progression of myelination between post-natal day 2 (P2) and P5. Our in vitro analysis suggested that Sox4 cDNA can be overexpressed while the protein translation is tightly regulated. Interestingly, we observed that Sox4 protein is stabilized in nerves of the CMT4C mouse, a model of the human neuropathy. We therefore crossed Sox4 transgenic mice with CMT4C mice and we observed that Sox4 overexpression exacerbated the neuropathy phenotype in these mice. While recognized as being crucial for the normal function of both neurons and myelinating glial cells, the processes that regulate the beginning of myelination and the nature of the neuro-glial cross-talk remains mostly unknown. In order to gain insight into the molecular pathways involved in the interactions between neurons and associated glial cells, we developed a neuron-glia co-culture system based on microfluidic chambers and successfully induced myelination in this system by ascorbic acid. Importantly, we observed that in addition to acting on Schwann cells, ascorbic acid also modulate neuronal/axonal NRG1/ErbB2-B3 signalling. The experimental setting used in our study thus allowed us to discover a novel phenomena of propagation for myelination in vitro. The further characterization of this event brought us to identify other compounds able to induce myelination: ADAMs secretases inhibitor GM6001 and cyclic-AMP. The results generated during my thesis project are therefore not only important for the advancement of our understanding of how the PNS works, but may also potentially help to develop new therapies aiming at improvement of PNS myelination under disease conditions. - Les cellules de Schwann synthétisent une grande quantité de membrane formant une structure spécialisée appelée myéline qui entoure les axones et facilite la transmission du signal électrique le long des neurones du système nerveux périphérique (SNP). Des études antérieures ont démontré que la différenciation et la dédifférenciation des cellules de Schwann (dans la situation d'une lésion nerveuse ou d'une maladie démyélinisante) sont régulées par des régulateurs cellulaires intrinsèques, incluant plusieurs facteurs de transcription. En particulier, la dédifférenciation des cellules de Schwann matures est contrôlée par l'activation de plusieurs régulateurs négatifs de la myélinisation dont Sox2, c-Jun, Notch et Pax3, tous habituellement exprimés dans des cellules de Schwann immatures et supprimés au début de la myélinisation. Afin d'identifier de nouveaux régulateurs de myélinisation impliqués dans le développement du SNP, nous avons analysé le profil d'expression génique durant le développement du SNP ainsi que dans trois modèles de neuropathies démyélinisantes. Cette analyse a mené à l'identification de Sox4, un membre de la famille des facteurs de transcription Sox, comme étant un candidat potentiel. Dans le but de caractériser la fonction moléculaire de Sox4 dans le SNP, nous avons généré deux lignées transgéniques de souris qui surexpriment Sox4 spécifiquement dans les cellules de Schwann. L'analyse détaillée de ces souris a montré que la surexpression de Sox4 dans les cellules de Schwann provoque un retard dans la progression de la myélinisation entre le jour postnatal 2 (P2) et P5. Notre analyse in vitro a suggéré que l'ADNc de Sox4 peut être surexprimé alors que la traduction des protéines est quand à elle étroitement régulée. De façon intéressante, nous avons observé que la protéine Sox4 est stabilisée dans les nerfs des souris CMT4C, un modèle de neuropathie humaine. Nous avons donc croisé les souris transgéniques Sox4 avec des souris CMT4C et avons observé que la surexpression de Sox4 exacerbe le phénotype de neuropathie chez ces souris. Bien que reconnus comme étant cruciaux pour le fonctionnement normal des neurones et des cellules gliales myélinisantes, les processus qui régulent le début de la myélinisation ainsi que la nature des interactions neurone-glie restent largement méconnus. Afin de mieux comprendre les mécanismes moléculaires impliqués dans les interactions entre les neurones et les cellules gliales leur étant associés, nous avons développé un système de co-culture neurone-glie basé sur des chambres microfluidiques et y avons induit avec succès la myélinisation avec de l'acide ascorbique. Étonnamment, nous avons remarqué que, en plus d'agir sur les cellules de Schwann, l'acide ascorbique module également la voie de signalisation neuronale/axonale NRG1/ErbB2-B3. Le protocole expérimental utilisé dans notre étude a ainsi permis de découvrir un nouveau phénomène de propagation de la myélinisation in vitro. La caractérisation plus poussée de ce phénomène nous a menés à identifier d'autres composés capables d'induire la myélinisation: L'inhibiteur de sécrétases ADAMs GM6001 et l'AMP cyclique. Les résultats obtenus au cours de mon projet de thèse ne sont donc pas seulement importants pour l'avancement de notre compréhension sur la façon dont le SNP fonctionne, mais peuvent aussi potentiellement aider à développer de nouvelles thérapies visant à l'amélioration de la myélinisation du SNP dans des conditions pathologiques.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.
Resumo:
To investigate the molecular basis that makes heterodimeric CD8alphabeta a more efficient coreceptor than homodimeric CD8alphaalpha, we used various CD8 transfectants of T1.4 T cell hybridomas, which are specific for H-2Kd, and a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). We demonstrate that CD8 is palmitoylated at the cytoplasmic tail of CD8beta and that this allows partitioning of CD8alphabeta, but not of CD8alphaalpha, in lipid rafts. Localization of CD8 in rafts is crucial for its coreceptor function. First, association of CD8 with the src kinase p56lck takes place nearly exclusively in rafts, mainly due to increased concentration of both components in this compartment. Deletion of the cytoplasmic domain of CD8beta abrogated localization of CD8 in rafts and association with p56lck. Second, CD8-mediated cross-linking of p56lck by multimeric Kd-peptide complexes or by anti-CD8 Ab results in p56lck activation in rafts, from which the abundant phosphatase CD45 is excluded. Third, CD8-associated activated p56lck phosphorylates CD3zeta in rafts and hence induces TCR signaling and T cell activation. This study shows that palmitoylation of CD8beta is required for efficient CD8 coreceptor function, mainly because it dramatically increases CD8 association with p56lck and CD8-mediated activation of p56lck in lipid rafts.
Resumo:
To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.
Resumo:
The plant immune system relies to a great extent on the highly regulated expression of hundreds of defense genes encoding antimicrobial proteins, such as defensins, and antiherbivore proteins, such as lectins. The expression of many of these genes is controlled by a family of mediators known as jasmonates; these cyclic oxygenated fatty acid derivatives are reminiscent of prostaglandins. The roles of jasmonates also extend to the control of reproductive development. How are these complex events regulated? Nearly 20 members of the jasmonate family have been characterized. Some, like jasmonic acid, exist in unmodified forms, whereas others are conjugated to other lipids or to hydrophobic amino acids. Why do so many chemically different forms of these mediators exist, and do individual jasmonates have unique signaling properties or are they made to facilitate transport within and between cells? Key features of the jasmonate signal pathway have been identified and include the specific activation of E3-type ubiquitin ligases thought to target as-yet-undescribed transcriptional repressors for modification or destruction. Several classes of transcription factor are known to function in the jasmonate pathway, and, in some cases, these proteins provide nodes that integrate this network with other important defensive and developmental pathways. Progress in jasmonate research is now rapid, but large gaps in our knowledge exist. Aimed to keep pace with progress, the ensemble of jasmonate Connections Maps at the Signal Transduction Knowledge Environment describe (i) the canonical signaling pathway, (ii) the Arabidopsis signaling pathway, and (iii) the biogenesis and structures of the jasmonates themselves.
Resumo:
By interacting with MHC class II molecules, CD4 facilitates lineage development as well as activation of Th cells. Expression of physiological levels of CD4 requires a proximal CD4 enhancer to stimulate basic CD4 promoter activity. T cell factor (TCF)-1/beta-catenin pathway has previously been shown to regulate thymocyte survival via up-regulating antiapoptotic molecule Bcl-xL. By both loss and gain of function studies, in this study we show additional function of TCF-1/beta-catenin pathway in the regulation of CD4 expression in vivo. Mice deficient in TCF-1 displayed significantly reduced protein and mRNA levels of CD4 in CD4+ CD8+ double-positive (DP) thymocytes. A transgene encoding Bcl-2 restored survival but not CD4 levels of TCF-1(-/-) DP cells. Thus, TCF-1-regulated survival and CD4 expression are two separate events. In contrast, CD4 levels were restored on DP TCF-1(-/-) cells by transgenic expression of a wild-type TCF-1, but not a truncated TCF-1 that lacks a domain required for interacting with beta-catenin. Furthermore, forced expression of a stabilized beta-catenin, a coactivator of TCF-1, resulted in up-regulation of CD4. TCF-1 or stabilized beta-catenin greatly stimulated activity of a CD4 reporter gene driven by a basic CD4 promoter and the CD4 enhancer. However, mutation of a potential TCF binding site located within the enhancer abrogated TCF-1 and beta-catenin-mediated activation of CD4 reporter. Finally, recruitment of TCF-1 to CD4 enhancer was detected in wild-type but not TCF-1 null mice by chromatin-immunoprecipitation analysis. Thus, our results demonstrated that TCF/beta-catenin pathway enhances CD4 expression in vivo by recruiting TCF-1 to stimulate CD4 enhancer activity.
Resumo:
The cdc10 gene of the fission yeast Schizosaccharomyces pombe is required for traverse of start and commitment to the mitotic cell division cycle rather than other fates. The product of the gene, p85cdc10, is a component of a factor that is thought to be involved in regulating the transcription of genes that are required for DNA synthesis. In order to define regions of the p85cdc10 protein that are important for its function a fine structure genetic map of the cdc10 gene was derived and the sequences of 13 cdc10ts mutants determined. The 13 mutants tested define eight alleles. Eleven of the mutants are located in the region that contains the two copies of the cdc10/SWI6 repeat motif, implicating it as important for p85cdc10 function.
Resumo:
Abstract: The increasingly high hygienic standards characterizing westernized societies correlate with an increasingly high prevalence of allergic disease. Initially based on these observations, the hygiene hypothesis postulates that reduced microbial stimulation during infancy impairs the immune system development and increases the risk of allergy. Moreover, there is increasing evidence that the crosstalk existing between the intestine and the resident microbiota is crucial for gut homeostasis. In particular, bacterial colonization of the gut affects the integrity of the gut barrier and stimulates the development of the gut associated immune tissue, both phenomena being essential for the immune system to mount a controlled response to food antigens. Therefore, alterations in the microbial colonization process, by compromising the barrier homeostasis, may increase the risk of food allergy. In this context, antibiotic treatment, frequently prescribed during infancy, affects gut colonization by bacteria. However, little is known about the impact of alterations in the colonization process on the maturation of the gut barrier and on the immunological response to oral antigens. The objective of this work was to determine the impact of a commercial antibiotic preparation employed in pediatric settings on the gut barrier status at the critical period of the suckling/weaning transition and to evaluate the physiological consequences of this treatment in terms of immune response to food antigens. We established an antibiotic-treated suckling rat model relevant to the pediatric population in terms of type, dose and route of administration of the antibiotic and of changes in the patterns of microbial colonization. Oral tolerance to a novel luminal antigen (ovalbumin) was impaired when the antigen was introduced during antibiotic treatment. These results paralleled to alterations in the intestinal permeability to macromolecules and reduced intestinal expression of genes coding for the major histocomptatibility complex II molecules, which suggest a reduced capacity of antigen handling and presentation in the intestine of the antibiotic-treated animals. In addition, low luminal IgA levels and reduced intestinal expression of genes coding for antimicrobial proteins suggest that protection against pathogens was reduced under antibiotic treatment. In conclusion, we observed in suckling rats that treatment with abroad-spectrum antibiotic commonly used in pediatric practices reduced the capacity of the immune system to develop tolerance. The impact of the antibiotic treatment on the immune response to the antigen-was likely mediated by the alterations of the gut microbiota, through impairment in the mechanisms of antigen handling and presentation. This work reinforces the body of data supporting a key role of the intestinal microbiota modulating the risk of allergy development and leads us to propose that the introduction of new food antigens should be avoided during antibiotic treatment in infants. Résumé: L'augmentation du niveau d'hygiène caractérisant les sociétés occidentales semble être fortement corrélée avec l'augmentation des cas d'allergie dans ces pays. De cette observation est née l'hypothèse qu'une diminution des stimuli microbiens pendant l'enfance modifie le développement du système immunitaire augmentant ainsi le risque d'allergie. En ce sens, un nombre croissant de données indiquent que les interactions existant entre l'intestin et les bactéries résidantes sont cruciales pour l'équilibre du système. En effet, la présence de bactéries dans l'intestin affecte l'intégrité de sa fonction de barrière et stimule le développement du système immunitaire intestinal. Ces deux paramètres étant essentiels à la mise en place d'une réponse contrôlée vis à vis d'un antigène reçu oralement, toute modification du processus naturel de colonisation compromettant l'équilibre intestinal pourrait augmenter le risque d'allergie. Les traitements aux antibiotiques, fréquemment prescrits en pédiatrie, modifient de façon conséquente le processus de colonisation bactérienne. Cependant peu de données existent concernant l'impact d'une altération du processus de colonisation sur la maturation de la barrière intestinale et de la réponse immunitaire dirigée contre un antigène. L'objectif de ce travail était de déterminer l'impact d'un antibiotique commercial et employé en pédiatrie sur l'état de la barrière intestinale au moment critique du sevrage et d'évaluer les conséquences physiologiques d'un tel traitement sur la réponse immune à un antigène alimentaire. Nous avons mis en place un modèle de rats allaités, traités à l'antibiotique, le plus proche possible des pratiques pédiatriques, en terme de nature, dose et voie d'administration de l'antibiotique. Nous avons constaté que l'établissement de la tolérance orale à un nouvel antigène (l'ovalbumine) est altéré quand celui-ci est donné pour la première fois au cours du traitement antibiotique. Ces résultats coïncident avec une diminution de la perméabilité intestinale aux macromolécules, ainsi qu'avec une diminution de l'expression des gènes codant pour les molécules du complexe majeur d'histocomptatibilité de classe II, suggérant une modification de l'apprêtement et de la présentation de l'antigène au niveau intestinal chez les rats traités à l'antibiotique. De plus, un faible taux d'IgA et une diminution de l'expression des gènes codant pour des protéines antimicrobiennes, observés après l'administration d'antibiotique, laissent à penser que la protection contre un pathogène est diminuée lors d'un traitement antibiotique. En conclusion, nous avons observé qu'un traitement antibiotique à large spectre d'activité, couramment utilisé en pédiatrie, réduit la capacité d'induction de la tolérance orale chez le rat allaité. L'impact du traitement antibiotique sur la réponse immune semble induite par l'altération de la flore intestinale via son effet sur les mécanismes d'apprêtement et de présentation de l'antigène. Ce travail renforce l'ensemble des données existantes qui accorde à la flore intestinale un rôle clef dans la modulation du risque de développement d'allergie et nous amène à recommander d'éviter l'introduction d'un nouvel aliment lorsqu'un enfant est traité aux antibiotiques.
Resumo:
In the damaged heart, cardiac adaptation relies primarily on cardiomyocyte hypertrophy. The recent discovery of cardiac stem cells in the postnatal heart, however, suggests that these cells could participate in the response to stress via their capacity to regenerate cardiac tissues. Using models of cardiac hypertrophy and failure, we demonstrate that components of the Notch pathway are up-regulated in the hypertrophic heart. The Notch pathway is an evolutionarily conserved cell-to-cell communication system, which is crucial in many developmental processes. Notch also plays key roles in the regenerative capacity of self-renewing organs. In the heart, Notch1 signaling takes place in cardiomyocytes and in mesenchymal cardiac precursors and is activated secondary to stimulated Jagged1 expression on the surface of cardiomyocytes. Using mice lacking Notch1 expression specifically in the heart, we show that the Notch1 pathway controls pathophysiological cardiac remodeling. In the absence of Notch1, cardiac hypertrophy is exacerbated, fibrosis develops, function is altered, and the mortality rate increases. Therefore, in cardiomyocytes, Notch controls maturation, limits the extent of the hypertrophic response, and may thereby contribute to cell survival. In cardiac precursors, Notch prevents cardiogenic differentiation, favors proliferation, and may facilitate the expansion of a transient amplifying cell compartment.
Resumo:
Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.
Resumo:
Pancreatic β-cells play a central role in glucose homeostasis by tightly regulating insulin release according to the organism's demand. Impairment of β-cell function due to hostile environment, such as hyperglycaemia and hyperlipidaemia, or due to autoimmune destruction of β-cells, results in diabetes onset. Both environmental factors and genetic predisposition are known to be involved in the development of the disease, but the exact mechanisms leading to β-cell dysfunction and death remain to be characterized. Non-coding RNA molecules, such as microRNAs (miRNAs), have been suggested to be necessary for proper β-cell development and function. The present review aims at summarizing the most recent findings about the role of non-coding RNAs in the control of β-cell functions and their involvement in diabetes. We will also provide a perspective view of the future research directions in the field of non-coding RNAs. In particular, we will discuss the implications for diabetes research of the discovery of a new communication mechanism based on cell-to-cell miRNA transfer. Moreover, we will highlight the emerging interconnections between miRNAs and epigenetics and the possible role of long non-coding RNAs in the control of β-cell activities.
Resumo:
The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.