205 resultados para realistic neural modeling
Resumo:
Since 1986, several near-vertical seismic reflection profiles have been recorded in Switzerland in order to map the deep geologic structure of the Alps. One objective of this endeavour has been to determine the geometries of the autochthonous basement and of the external crystalline massifs, important elements for understanding the geodynamics of the Alpine orogeny. The PNR-20 seismic line W1, located in the Rawil depression of the western Swiss Alps, provides important information on this subject. It extends northward from the `'Penninic front'' across the Helvetic nappes to the Prealps. The crystalline massifs do not outcrop along this profile. Thus, the interpretation of `'near-basement'' reflections has to be constrained by down-dip projections of surface geology, `'true amplitude'' processing, rock physical property studies and modelling. 3-D seismic modelling has been used to evaluate the seismic response of two alternative down-dip projection models. To constrain the interpretation in the southern part of the profile, `'true amplitude'' processing has provided information on the strength of the reflections. Density and velocity measurements on core samples collected up-dip from the region of the seismic line have been used to evaluate reflection coefficients of typical lithologic boundaries in the region. The cover-basement contact itself is not a source of strong reflections, but strong reflections arise from within the overlaying metasedimentary cover sequence, allowing the geometry of the top of the basement to be determined on the basis of `'near-basement'' reflections. The front of the external crystalline massifs is shown to extend beneath the Prealps, about 6 km north of the expected position. A 2-D model whose seismic response shows reflection patterns very similar to the observed is proposed.
Resumo:
Despite their limited proliferation capacity, regulatory T cells (T(regs)) constitute a population maintained over the entire lifetime of a human organism. The means by which T(regs) sustain a stable pool in vivo are controversial. Using a mathematical model, we address this issue by evaluating several biological scenarios of the origins and the proliferation capacity of two subsets of T(regs): precursor CD4(+)CD25(+)CD45RO(-) and mature CD4(+)CD25(+)CD45RO(+) cells. The lifelong dynamics of T(regs) are described by a set of ordinary differential equations, driven by a stochastic process representing the major immune reactions involving these cells. The model dynamics are validated using data from human donors of different ages. Analysis of the data led to the identification of two properties of the dynamics: (1) the equilibrium in the CD4(+)CD25(+)FoxP3(+)T(regs) population is maintained over both precursor and mature T(regs) pools together, and (2) the ratio between precursor and mature T(regs) is inverted in the early years of adulthood. Then, using the model, we identified three biologically relevant scenarios that have the above properties: (1) the unique source of mature T(regs) is the antigen-driven differentiation of precursors that acquire the mature profile in the periphery and the proliferation of T(regs) is essential for the development and the maintenance of the pool; there exist other sources of mature T(regs), such as (2) a homeostatic density-dependent regulation or (3) thymus- or effector-derived T(regs), and in both cases, antigen-induced proliferation is not necessary for the development of a stable pool of T(regs). This is the first time that a mathematical model built to describe the in vivo dynamics of regulatory T cells is validated using human data. The application of this model provides an invaluable tool in estimating the amount of regulatory T cells as a function of time in the blood of patients that received a solid organ transplant or are suffering from an autoimmune disease.
Resumo:
Auditory evoked potentials are informative of intact cortical functions of comatose patients. The integrity of auditory functions evaluated using mismatch negativity paradigms has been associated with their chances of survival. However, because auditory discrimination is assessed at various delays after coma onset, it is still unclear whether this impairment depends on the time of the recording. We hypothesized that impairment in auditory discrimination capabilities is indicative of coma progression, rather than of the comatose state itself and that rudimentary auditory discrimination remains intact during acute stages of coma. We studied 30 post-anoxic comatose patients resuscitated from cardiac arrest and five healthy, age-matched controls. Using a mismatch negativity paradigm, we performed two electroencephalography recordings with a standard 19-channel clinical montage: the first within 24 h after coma onset and under mild therapeutic hypothermia, and the second after 1 day and under normothermic conditions. We analysed electroencephalography responses based on a multivariate decoding algorithm that automatically quantifies neural discrimination at the single patient level. Results showed high average decoding accuracy in discriminating sounds both for control subjects and comatose patients. Importantly, accurate decoding was largely independent of patients' chance of survival. However, the progression of auditory discrimination between the first and second recordings was informative of a patient's chance of survival. A deterioration of auditory discrimination was observed in all non-survivors (equivalent to 100% positive predictive value for survivors). We show, for the first time, evidence of intact auditory processing even in comatose patients who do not survive and that progression of sound discrimination over time is informative of a patient's chance of survival. Tracking auditory discrimination in comatose patients could provide new insight to the chance of awakening in a quantitative and automatic fashion during early stages of coma.
Resumo:
Les écosystèmes fournissent de nombreuses ressources et services écologiques qui sont utiles à la population humaine. La biodiversité est une composante essentielle des écosystèmes et maintient de nombreux services. Afin d'assurer la permanence des services écosystémiques, des mesures doivent être prises pour conserver la biodiversité. Dans ce but, l'acquisition d'informations détaillées sur la distribution de la biodiversité dans l'espace est essentielle. Les modèles de distribution d'espèces (SDMs) sont des modèles empiriques qui mettent en lien des observations de terrain (présences ou absences d'une espèce) avec des descripteurs de l'environnement, selon des courbes de réponses statistiques qui décrive la niche réalisée des espèces. Ces modèles fournissent des projections spatiales indiquant les lieux les plus favorables pour les espèces considérées. Le principal objectif de cette thèse est de fournir des projections plus réalistes de la distribution des espèces et des communautés en montagne pour le climat présent et futur en considérant non-seulement des variables abiotiques mais aussi biotiques. Les régions de montagne et l'écosystème alpin sont très sensibles aux changements globaux et en même temps assurent de nombreux services écosystémiques. Cette thèse est séparée en trois parties : (i) fournir une meilleure compréhension du rôle des interactions biotiques dans la distribution des espèces et l'assemblage des communautés en montagne (ouest des Alpes Suisses), (ii) permettre le développement d'une nouvelle approche pour modéliser la distribution spatiale de la biodiversité, (iii) fournir des projections plus réalistes de la distribution future des espèces ainsi que de la composition des communautés. En me focalisant sur les papillons, bourdons et plantes vasculaires, j'ai détecté des interactions biotiques importantes qui lient les espèces entre elles. J'ai également identifié la signature du filtre de l'environnement sur les communautés en haute altitude confirmant l'utilité des SDMs pour reproduire ce type de processus. A partir de ces études, j'ai contribué à l'amélioration méthodologique des SDMs dans le but de prédire les communautés en incluant les interactions biotiques et également les processus non-déterministes par une approche probabiliste. Cette approche permet de prédire non-seulement la distribution d'espèces individuelles, mais également celle de communautés dans leur entier en empilant les projections (S-SDMs). Finalement, j'ai utilisé cet outil pour prédire la distribution d'espèces et de communautés dans le passé et le futur. En particulier, j'ai modélisé la migration post-glaciaire de Trollius europaeus qui est à l'origine de la structure génétique intra-spécifique chez cette espèce et évalué les risques de perte face au changement climatique. Finalement, j'ai simulé la distribution des communautés de bourdons pour le 21e siècle afin d'évaluer les changements probables dans ce groupe important de pollinisateurs. La diversité fonctionnelle des bourdons va être altérée par la perte d'espèces spécialistes de haute altitude et ceci va influencer la pollinisation des plantes en haute altitude. - Ecosystems provide a multitude of resources and ecological services, which are useful to human. Biodiversity is an essential component of those ecosystems and guarantee many services. To assure the permanence of ecosystem services for future generation, measure should be applied to conserve biodiversity. For this purpose, the acquisition of detailed information on how biodiversity implicated in ecosystem function is distributed in space is essential. Species distribution models (SDMs) are empirical models relating field observations to environmental predictors based on statistically-derived response surfaces that fit the realized niche. These models result in spatial predictions indicating locations of the most suitable environment for the species and may potentially be applied to predict composition of communities and their functional properties. The main objective of this thesis was to provide more accurate projections of species and communities distribution under current and future climate in mountains by considering not solely abiotic but also biotic drivers of species distribution. Mountain areas and alpine ecosystems are considered as particularly sensitive to global changes and are also sources of essential ecosystem services. This thesis had three main goals: (i) a better ecological understanding of biotic interactions and how they shape the distribution of species and communities, (ii) the development of a novel approach to the spatial modeling of biodiversity, that can account for biotic interactions, and (iii) ecologically more realistic projections of future species distributions, of future composition and structure of communities. Focusing on butterfly and bumblebees in interaction with the vegetation, I detected important biotic interactions for species distribution and community composition of both plant and insects along environmental gradients. I identified the signature of environmental filtering processes at high elevation confirming the suitability of SDMs for reproducing patterns of filtering. Using those case-studies, I improved SDMs by incorporating biotic interaction and accounting for non-deterministic processes and uncertainty using a probabilistic based approach. I used improved modeling to forecast the distribution of species through the past and future climate changes. SDMs hindcasting allowed a better understanding of the spatial range dynamic of Trollius europaeus in Europe at the origin of the species intra-specific genetic diversity and identified the risk of loss of this genetic diversity caused by climate change. By simulating the future distribution of all bumblebee species in the western Swiss Alps under nine climate change scenarios for the 21st century, I found that the functional diversity of this pollinator guild will be largely affected by climate change through the loss of high elevation specialists. In turn, this will have important consequences on alpine plant pollination.
Resumo:
ABSTRACT: BACKGROUND: The prevalence of obesity has increased in societies of all socio-cultural backgrounds. To date, guidelines set forward to prevent obesity have universally emphasized optimal levels of physical activity. However there are few empirical data to support the assertion that low levels of energy expenditure in activity is a causal factor in the current obesity epidemic are very limited. METHODS: The Modeling the Epidemiologic Transition Study (METS) is a cohort study designed to assess the association between physical activity levels and relative weight, weight gain and diabetes and cardiovascular disease risk in five population-based samples at different stages of economic development. Twenty-five hundred young adults, ages 25-45, were enrolled in the study; 500 from sites in Ghana, South Africa, Seychelles, Jamaica and the United States. At baseline, physical activity levels were assessed using accelerometry and a questionnaire in all participants and by doubly labeled water in a subsample of 75 per site. We assessed dietary intake using two separate 24-h recalls, body composition using bioelectrical impedance analysis, and health history, social and economic indicators by questionnaire. Blood pressure was measured and blood samples collected for measurement of lipids, glucose, insulin and adipokines. Full examination including physical activity using accelerometry, anthropometric data and fasting glucose will take place at 12 and 24 months. The distribution of the main variables and the associations between physical activity, independent of energy intake, glucose metabolism and anthropometric measures will be assessed using cross-section and longitudinal analysis within and between sites. DISCUSSION: METS will provide insight on the relative contribution of physical activity and diet to excess weight, age-related weight gain and incident glucose impairment in five populations' samples of young adults at different stages of economic development. These data should be useful for the development of empirically-based public health policy aimed at the prevention of obesity and associated chronic diseases.
Resumo:
L'activité humaine affecte particulièrement la biodiversité, qui décline à une vitesse préoccupante. Parmi les facteurs réduisant la biodiversité, on trouve les espèces envahissantes. Symptomatiques d'un monde globalisé où l'échange se fait à l'échelle de la planète, certaines espèces, animales ou végétales, sont introduites, volontairement ou accidentellement par l'activité humaine (par exemple lors des échanges commerciaux ou par les voyageurs). Ainsi, ces espèces atteignent des régions qu'elles n'auraient jamais pu coloniser naturellement. Une fois introduites, l'absence de compétiteur peut les rendre particulièrement nuisibles. Ces nuisances sont plus ou moins directes, allant de problèmes sanitaires (p. ex. les piqûres très aigües des fourmis de feu, originaires d'Amérique du Sud et colonisant à une vitesse fulgurante les USA, l'Australie ou la Chine) à des nuisances sur la biodiversité (p. ex. les ravages de la perche du Nil sur la diversité unique des poissons Cichlidés du Lac Victoria). Il est donc important de pouvoir prévenir de telles introductions. De plus, pour le biologiste, ces espèces représentent une rare occasion de pouvoir comprendre les mécanismes évolutifs et écologiques qui expliquent le succès des envahissantes dans un monde où les équilibres sont bouleversés. Les modèles de niche environnementale sont un outil particulièrement utile dans le cadre de cette problématique. En reliant des observations d'espèces aux conditions environnementales où elles se trouvent, ils peuvent prédire la distribution potentielle des envahissantes, permettant d'anticiper et de mieux limiter leur impact. Toutefois, ils reposent sur des hypothèses pas évidentes à démontrer. L'une d'entre elle étant que la niche d'une espèce reste constante dans le temps, et dans l'espace. Le premier objectif de mon travail est de comparer si la niche d'une espèce envahissante diffère entre sa distribution d'origine native et celle d'origine introduite. En étudiant 50 espèces de plantes et 168 espèces de Mammifères, je démontre que c'est le cas et que par corolaire, il est possible de prédire leurs distributions. La deuxième partie de mon travail consiste à comprendre quelles seront les interactions entre le changement climatiques et les envahissantes, afin d'estimer leur impact sous un climat réchauffé. En étudiant la distribution de 49 espèces de plantes envahissantes, je démontre que les montagnes, régions relativement préservée par ce problème, deviendront bien plus exposées aux risques d'invasions biologiques. J'expose aussi comment les interactions entre l'activité humaine, le réchauffement climatique et les espèces envahissantes menacent la vigne sauvage en Europe et propose des zones géographiques particulièrement adaptée pour sa conservation. Enfin, à une échelle beaucoup plus locale, je montre qu'il est possible d'utiliser ces modèles de niches le long d'une rivière à une échelle extrêmement fine (1 mètre), potentiellement utile pour rationnaliser des mesures de conservations sur le terrain. - Biodiversity is significantly negatively affected by human activity. Invasive species are one of the most important factors causing biodiversity's decline. Intimately linked to the era of global trade, some plant or animal species can be accidentally or casually introduced with human activity (e.g. trade or travel). In this way, these species reach areas they could never reach through natural dispersal. Once naturalized, the lack of competitors can make these species highly noxious. Their effect is more or less direct, from sanitary problems (e.g. the harmful sting of Fire Ants, originating from South America and now spreading throughout USA, China and Australia) or can affect biodiversity (e.g. the Nile perch, devastating the one of the richest hotspot of Cichlid fishes diversity in Lake Victoria). It is thus important to prevent such harmful introductions. Moreover, invasive species represent for biologists one of the rare occasions to understand the evolutionary and ecological mechanisms behind the success of invaders in a world where natural equilibrium is already disturbed. Environmental niche models are particularly useful to tackle this problematic. By relating species observation to the environmental conditions where they occur, they can predict the potential distribution of invasive species, allowing a better anticipation and thus limiting their impact. However, they rely on strong assumption, one of the most important being that the modeled niche remains constant through space and time. The first aim of my thesis is to quantify the difference between the native and the invaded niche. By investigating 50 plant and 168 mammal species, I show that the niche is at least partially conserved, supporting for reliable predictions of invasive' s potential distributions. The second aim of my thesis is to understand the possible interactions between climate change and invasive species, such as to assess their impact under a warmer climate. By studying 49 invasive plant species, I show that mountain areas, which were relatively preserved, will become more suitable for biological invasions. Additionally, I show how interactions between human activity, global warming and invasive species are threatening the wild grapevine in Europe and propose geographical areas particularly adapted for conservation measures. Finally, at a much finer scale where conservation plannings ultimately take place, I show that it is possible to model the niche at very high resolution (1 meter) in an alluvial area allowing better prioritizations for conservation.
Resumo:
We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.
Resumo:
We present models predicting the potential distribution of a threatened ant species, Formica exsecta Nyl., in the Swiss National Park ( SNP). Data to fit the models have been collected according to a random-stratified design with an equal number of replicates per stratum. The basic aim of such a sampling strategy is to allow the formal testing of biological hypotheses about those factors most likely to account for the distribution of the modeled species. The stratifying factors used in this study were: vegetation, slope angle and slope aspect, the latter two being used as surrogates of solar radiation, considered one of the basic requirements of F. exsecta. Results show that, although the basic stratifying predictors account for more than 50% of the deviance, the incorporation of additional non-spatially explicit predictors into the model, as measured in the field, allows for an increased model performance (up to nearly 75%). However, this was not corroborated by permutation tests. Implementation on a national scale was made for one model only, due to the difficulty of obtaining similar predictors on this scale. The resulting map on the national scale suggests that the species might once have had a broader distribution in Switzerland. Reasons for its particular abundance within the SNP might possibly be related to habitat fragmentation and vegetation transformation outside the SNP boundaries.
Resumo:
Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.
Resumo:
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.