112 resultados para plant-soil interactions
Resumo:
RésuméEn agriculture d'énormes pertes sont causées par des champignons telluriques pathogènes tels que Thielaviopsis, Fusarium, Gaeumannomyces et Rhizoctonia ou encore l'oomycète Pythium. Certaines bactéries dites bénéfiques, comme Pseudomonas fluorescens, ont la capacité de protéger les plantes de ces pathogènes par la colonisation de leur racines, par la production de métabolites secondaires possédants des propriétés antifongiques et par l'induction des mécanismes de défenses de la plante colonisée. P. fluorescens CHAO, une bactérie biocontrôle isolée d'un champ de tabac à Payerne, a la faculté de produire un large spectre de métabolites antifongiques, en particulier le 2,4- diacétylphloroglucinol (DAPG), la pyolutéorine (PLT), le cyanure d'hydrogène (HCN), la pyrrolnitrine (PRN) ainsi que des chélateurs de fer.La plante, par sécrétion racinaire, produit des rhizodéposites, source de carbone et d'azote, qui profitent aux populations bactériennes vivant dans la rhizosphere. De plus, certains stresses biotiques et abiotiques modifient cette sécrétion racinaire, en terme quantitatif et qualitatif. De leur côté, les bactéries bénéfiques, améliorent, de façon direct et/ou indirect, la croissance de la plante hôte. De nombreux facteurs biotiques et abiotiques sont connus pour réguler la production de métabolites secondaires chez les bactéries. Des études récentes ont démontré l'importance de la communication entre la plante et les bactéries bénéfiques afin que s'établisse une interaction profitant à chacun des deux partis. Il est ainsi vraisemblable que les populations bactériennes associées aux racines soient capables d'intégrer ces signaux et d'adapter spécifiquement leur comportement en conséquence.La première partie de ce travail de thèse a été la mise au point d'outils basés sur la cytométrie permettant de mesurer l'activité antifongique de cellules bactériennes individuelles dans un environnent naturel, les racines des plantes. Nous avons démontré, grâce à un double marquage aux protéines autofluorescentes GFP et mCherry, que les niveaux d'expression des gènes impliqués dans la biosynthèse des substances antifongiques DAPG, PLT, PRN et HCN ne sont pas les mêmes dans des milieux de cultures liquides que sur les racines de céréales. Par exemple, l'expression de pltA (impliqué dans la biosynthèse du PLT) est quasiment abolie sur les racines de blé mais atteint un niveau relativement haut in vitro. De plus cette étude a mis en avant l'influence du génotype céréalien sur l'expression du gène phlA qui est impliqué dans la biosynthèse du DAPG.Une seconde étude a révélé la communication existant entre une céréale (orge) infectée par le pathogène tellurique Pythium ultimum et P. fluorescens CHAO. Un système de partage des racines nous a permis de séparer physiquement le pathogène et la bactérie bénéfique sur la plante. Cette méthode a donné la possibilité d'évaluer l'effet systémique, causé par l'attaque du pathogène, de la plante sur la bactérie biocontrôle. En effet, l'infection par le phytopathogène modifie la concentration de certains composés phénoliques dans les exsudats racinaires stimulant ainsi l'expression de phi A chez P.fluorescens CHAO.Une troisième partie de ce travail focalise sur l'effet des amibes qui sont des micro-prédateurs présents dans la rhizosphere. Leur présence diminue l'expression des gènes impliqués dans la biosynthèse du DAPG, PLT, PRN et HCN chez P.fluorescens CHAO, ceci en culture liquide et sur des racines d'orge. De plus, des molécules provenant du surnageant d'amibes, influencent l'expression des gènes requis pour la biosynthèse de ces antifongiques. Ces résultats illustrent que les amibes et les bactéries de la rhizosphere ont développé des stratégies pour se reconnaître et adapter leur comportement.La dernière section de ce travail est consacrée à l'acide indole-acétique (LA.A), une phytohormone connue pour son effet stimulateur sur phlA. Une étude moléculaire détaillée nous a démontré que cet effet de l'IAA est notamment modulé par une pompe à efflux (FusPl) et de son régulateur transcriptionnel (MarRl). De plus, les gènes fusPl et marRl sont régulés par d'autres composés phénoliques tels que le salicylate (un signal végétal) et l'acide fusarique (une phytotoxine du pathogène Fusarium).En résumé, ce travail de thèse illustre la complexité des interactions entre les eucaryotes et procaryotes de la rhizosphère. La reconnaissance mutuelle et l'instauration d'un dialogue moléculaire entre une plante hôte et ses bactéries bénéfiques associées? sont indispensables à la survie des deux protagonistes et semblent être hautement spécifiques.SummaryIn agriculture important crop losses result from the attack of soil-borne phytopathogenic fungi, including Thielaviopsis, Fusarium, Gaeumannomyces and Rhizoctonia, as well as from the oomycete Pythium. Certain beneficial microorganisms of the rhizosphere, in particular Pseudomonas fluorescens, have the ability to protect plants against phytopathogens by the intense colonisation of roots, by the production of antifungal exoproducts, and by induction of plant host defences. P. fluorescens strain CHAO, isolated from a tobacco field near Payerne, produces a large array of antifungal exoproducts, including 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT), hydrogen cyanide (HCN), pyrrolnitrin (PRN) and iron chelators. Plants produce rhizodeposites via root secretion and these represent a relevant source of carbon and nitrogen for rhizosphere microorganisms. Various biotic and abiotic stresses influence the quantity and the quality of released exudates. One the other hand, beneficial bacteria directly or indirectly promote plant growth. Biotic and abiotic factors regulate exoproduct production in biocontrol microorganisms. Recent studies have highlighted the importance of communication in establishing a fine-tuned mutualist interaction between plants and their associated beneficial bacteria. Bacteria may be able to integrate rhizosphere signals and adapt subsequently their behaviour.In a first part of the thesis, we developed a new method to monitor directly antifungal activity of individual bacterial cells in a natural environment, i.e. on roots of crop plants. We were able to demonstrate, via a dual-labelling system involving green and red fluorescent proteins (GFP, mCherry) and FACS-based flow cytometry, that expression levels of biosynthetic genes for the antifungal compounds DAPG, PLT, PRN, and HCN are highly different in liquid culture and on roots of cereals. For instance, expression of pltA (involved in PLT biosynthesis) was nearly abolished on wheat roots whereas it attained a relatively high level under in vitro conditions. In addition, we established the importance of the cereal genotype in the expression of phi A (involved in DAPG biosynthesis) in P. fluorescens CHAO.A second part of this work highlighted the systemic communication that exists between biocontrol pseudomonads and plants following attack by a root pathogen. A split-root system, allowing physical separation between the soil-borne oomycete pathogen Phytium ultimum and P. fluorescens CHAO on barley roots, was set up. Root infection by the pathogen triggered a modification of the concentration of certain phenolic root exudates in the healthy root part, resulting in an induction ofphlA expression in P. fluorescens CHAO.Amoebas are micro-predators of the rhizosphere that feed notably on bacteria. In the third part of the thesis, co-habitation of Acanthamoeba castellanii with P. fluorescens CHAO in culture media and on barley roots was found to significantly reduce bacterial expression of genes involved in the biosynthesis of DAPG, PLT, HCN and PRN. Interestingly, molecular cues present in supernatant of A. castelanii induced the expression of these antifungal genes. These findings illustrate the strategies of mutual recognition developed by amoeba and rhizosphere bacteria triggering responses that allow specific adaptations of their behaviour.The last section of the work focuses on indole-3-acetic acid (IAA), a phytohormone that stimulates the expression of phi A. A detailed molecular study revealed that the IAA-mediated effect on phi A is notably modulated by an efflux pump (FusPl) and its transcriptional regulator (MarRl). Remarkably, transcription of fusPl and marRl was strongly upregulated in presence of other phenolic compounds such as salicylate (a plant signal) and fusaric acid (a phytotoxin of the pathogenic fungus Fusarium).To sum up, this work illustrates the great complexity of interactions between eukaryotes and prokaryotes taking place in the rhizosphere niche. The mutual recognition and the establishment of a molecular cross-talk between the host plant and its associated beneficial bacteria are essential for the survival of the two partners and these interactions appear to be highly specific.
Resumo:
* Arbuscular mycorrhizal fungi (AMF) are plant symbionts that improve floristic diversity and ecosystem productivity. Many AMF species are generalists with wide host ranges. Arbuscular mycorrhizal fungi individuals are heterokaryotic, and AMF populations are genetically diverse. Populations of AMF harbor two levels of genetic diversity on which selection can act, namely among individuals and within individuals. Whether environmental factors alter genetic diversity within populations is still unknown. * Here, we measured genetic changes and changes in fitness-related traits of genetically distinct AMF individuals from one field, grown with different concentrations of available phosphate or different host species. * We found significant genotype-by-environment interactions for AMF fitness traits in response to these treatments. Host identity had a strong effect on the fitness of different AMF, unearthing a specificity of response within Glomus intraradices. Arbuscular mycorrhizal fungi individuals grown in novel environments consistently showed a reduced presence of polymorphic genetic markers, providing some evidence for host or phosphate-induced genetic change in AMF. * Given that AMF individuals can form extensive hyphal networks colonizing different hosts simultaneously, contrasting habitats or soil properties may lead to evolution in the population. Local selection may alter the structure of AMF populations and maintain genetic diversity, potentially even within the hyphal network of one fungus.
Resumo:
The role of competition for light among plants has long been recognized at local scales, but its potential importance for plant species' distribution at larger spatial scales has largely been ignored. Tree cover acts as a modulator of local abiotic conditions, notably by reducing light availability below the canopy and thus the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains. Using 6,935 vegetation plots located across the European Alps, we fit Generalized Linear Models (GLM) for the distribution of 960 herbs and shrubs species to assess the effect of tree cover at both plot and landscape grain sizes (~ 10-m and 1-km, respectively). We ran four models with different combinations of variables (climate, soil and tree cover) for each species at both spatial grains. We used partial regressions to evaluate the independent effects of plot- and landscape-scale tree cover on plant communities. Finally, the effects on species' elevational range limits were assessed by simulating a removal experiment comparing the species' distribution under high and low tree cover. Accounting for tree cover improved model performance, with shade-tolerant species increasing their probability of presence at high tree cover whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both plot and landscape spatial grains, albeit strongest at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-scale plant communities, suggesting that the effects may be transmitted to coarser grains through meta-community dynamics. At high tree cover, shade-intolerant species exhibited elevational range contractions, especially at their upper limit, whereas shade-tolerant species showed elevational range expansions at both limits. Our findings suggest that the range shifts for herb and shrub species may be modulated by tree cover dynamics.
Resumo:
Les bactéries du genre Pseudomonas ont la capacité étonnante de s'adapter à différents habitats et d'y survivre, ce qui leur a permis de conquérir un large éventail de niches écologiques et d'interagir avec différents organismes hôte. Les espèces du groupe Pseudomonas fluorescens peuvent être facilement isolées de la rhizosphère et sont communément connues comme des Pseudomonas bénéfiques pour les plantes. Elles sont capables d'induire la résistance systémique des plantes, d'induire leur croissance et de contrer des phytopathogènes du sol. Un sous-groupe de ces Pseudomonas a de plus développé la capacité d'infecter et de tuer certaines espèces d'insectes. Approfondir les connaissances sur l'interaction de ces bactéries avec les insectes pourraient conduire au développement de nouveaux biopesticides pour la protection des cultures. Le but de cette thèse est donc de mieux comprendre la base moléculaire, l'évolution et la régulation de la pathogénicité des Pseudomonas plante-bénéfiques envers les insectes. Plus spécifiquement, ce travail a été orienté sur l'étude de la production de la toxine insecticide appelée Fit et sur l'indentification d'autres facteurs de virulence participant à la toxicité de la bactérie envers les insectes. Dans la première partie de ce travail, la régulation de la production de la toxine Fit a été évaluée par microscopie à épifluorescence en utilisant des souches rapportrices de Pseudomonas protegens CHA0 qui expriment la toxine insecticide fusionnée à une protéine fluorescente rouge, au site natif du gène de la toxine. Celle-ci a été détectée uniquement dans l'hémolymphe des insectes et pas sur les racines des plantes, ni dans les milieux de laboratoire standards, indiquant une production dépendante de l'hôte. L'activation de la production de la toxine est contrôlée par trois protéines régulatrices dont l'histidine kinase FitF, essentielle pour un contrôle précis de l'expression et possédant un domaine "senseur" similaire à celui de la kinase DctB qui régule l'absorption de carbone chez les Protéobactéries. Il est donc probable que, durant l'évolution de FitF, un réarrangement de ce domaine "senseur" largement répandu ait contribué à une production hôte-spécifique de la toxine. Les résultats de cette étude suggèrent aussi que l'expression de la toxine Fit est plutôt réprimée en présence de composés dérivés des plantes qu'induite par la perception d'un signal d'insecte spécifique. Dans la deuxième partie de ce travail, des souches mutantes ciblant des facteurs de virulence importants identifiés dans des pathogènes connus ont été générées, dans le but d'identifier ceux avec une virulence envers les insectes atténuée. Les résultats ont suggéré que l'antigène O du lipopolysaccharide (LPS) et le système régulateur à deux composantes PhoP/PhoQ contribuent significativement à la virulence de P. protegens CHA0. La base génétique de la biosynthèse de l'antigène O dans les Pseudomonas plante-bénéfiques et avec une activité insecticide a été élucidée et a révélé des différences considérables entre les lignées suite à des pertes de gènes ou des acquisitions de gènes par transfert horizontal durant l'évolution de certaines souches. Les chaînes latérales du LPS ont été montrées comme vitales pour une infection des insectes réussie par la souche CHA0, après ingestion ou injection. Les Pseudomonas plante-bénéfiques, avec une activité insecticide sont naturellement résistants à la polymyxine B, un peptide antimicrobien modèle. La protection contre ce composé antimicrobien particulier dépend de la présence de l'antigène O et de la modification du lipide A, une partie du LPS, avec du 4-aminoarabinose. Comme les peptides antimicrobiens cationiques jouent un rôle important dans le système immunitaire des insectes, l'antigène O pourrait être important chez les Pseudomonas insecticides pour surmonter les mécanismes de défense de l'hôte. Le système PhoP/PhoQ, connu pour contrôler les modifications du lipide A chez plusieurs bactéries pathogènes, a été identifié chez Pseudomonas chlororaphis PCL1391 et P. protegens CHA0. Pour l'instant, il n'y a pas d'évidence que des modifications du lipide A contribuent à la pathogénicité de cette bactérie envers les insectes. Cependant, le senseur-kinase PhoQ est requis pour une virulence optimale de la souche CHA0, ce qui suggère qu'il régule aussi l'expression des facteurs de virulence de cette bactérie. Les découvertes de cette thèse démontrent que certains Pseudomonas associés aux plantes sont de véritables pathogènes d'insectes et donnent quelques indices sur l'évolution de ces microbes pour survivre dans l'insecte-hôte et éventuellement le tuer. Les résultats suggèrent également qu'une recherche plus approfondie est nécessaire pour comprendre comment ces bactéries sont capables de contourner ou surmonter la réponse immunitaire de l'hôte et de briser les barrières physiques pour envahir l'insecte lors d'une infection orale. Pour cela, les futures études ne devraient pas uniquement se concentrer sur le côté bactérien de l'interaction hôte-microbe, mais aussi étudier l'infection du point de vue de l'hôte. Les connaissances gagnées sur la pathogénicité envers les insectes des Pseudomonas plante-bénéfiques donnent un espoir pour une future application en agriculture, pour protéger les plantes, non seulement contre les maladies, mais aussi contre les insectes ravageurs. -- Pseudomonas bacteria have the astonishing ability to survive within and adapt to different habitats, which has allowed them to conquer a wide range of ecological niches and to interact with different host organisms. Species of the Pseudomonas fluorescens group can readily be isolated from plant roots and are commonly known as plant-beneficial pseudomonads. They are capable of promoting plant growth, inducing systemic resistance in the plant host and antagonizing soil-borne phytopathogens. A defined subgroup of these pseudomonads evolved in addition the ability to infect and kill certain insect species. Profound knowledge about the interaction of these particular bacteria with insects could lead to the development of novel biopesticides for crop protection. This thesis thus aimed at a better understanding of the molecular basis, evolution and regulation of insect pathogenicity in plant-beneficial pseudomonads. More specifically, it was outlined to investigate the production of an insecticidal toxin termed Fit and to identify additional factors contributing to the entomopathogenicity of the bacteria. In the first part of this work, the regulation of Fit toxin production was probed by epifluorescence microscopy using reporter strains of Pseudomonas protegens CHAO that express a fusion between the insecticidal toxin and a red fluorescent protein in place of the native toxin gene. The bacterium was found to express its insecticidal toxin only in insect hemolymph but not on plant roots or in common laboratory media. The host-dependent activation of Fit toxin production is controlled by three local regulatory proteins. The histidine kinase of this regulatory system, FitF, is essential for the tight control of toxin expression and shares a sensing domain with DctB, a sensor kinase regulating carbon uptake in Proteobacteria. It is therefore likely that shuffling of a ubiquitous sensor domain during the evolution of FitF contributed to host- specific production of the Fit toxin. Findings of this study additionally suggest that host-specific expression of the Fit toxin is mainly achieved by repression in the presence of plant-derived compounds rather than by induction upon perceiving an insect-specific signal molecule. In the second part of this thesis, mutant strains were generated that lack factors previously shown to be important for virulence in prominent pathogens. A screening for attenuation in insect virulence suggested that lipopolysaccharide (LPS) O-antigen and the PhoP-PhoQ two-component regulatory system significantly contribute to virulence of P. protegens CHAO. The genetic basis of O-antigen biosynthesis in plant-beneficial pseudomonads displaying insect pathogenicity was elucidated and revealed extensive differences between lineages due to reduction and horizontal acquisition of gene clusters during the evolution of several strains. Specific 0 side chains of LPS were found to be vital for strain CHAO to successfully infect insects by ingestion or upon injection. Insecticidal pseudomonads with plant-beneficial properties were observed to be naturally resistant to polymyxin B, a model antimicrobial peptide. Protection against this particular antimicrobial compound was dependent on the presence of O-antigen and modification of the lipid A portion of LPS with 4-aminoarabinose. Since cationic antimicrobial peptides play a major role in the immune system of insects, O-antigenic polysaccharides could be important for insecticidal pseudomonads to overcome host defense mechanisms. The PhoP-PhoQ system, which is well-known to control lipid A modifications in several pathogenic bacteria, was identified in Pseudomonas chlororaphis PCL1391 and P. protegens CHAO. No evidence was found so far that lipid A modifications contribute to insect pathogenicity in this bacterium. However, the sensor kinase PhoQ was required for full virulence of strain CHAO suggesting that it additionally regulates the expression of virulence factors in this bacterium. The findings of this thesis demonstrate that certain plant-associated pseudomonads are true insect pathogens and give some insights into how these microbes evolved to survive within and eventually kill the insect host. Results however also point out that more in-depth research is needed to know how exactly these fascinating bacteria manage to bypass or overcome host immune responses and to breach physical barriers to invade insects upon oral infection. To achieve this, future studies should not only focus on the bacterial side of the microbe-host interactions but also investigate the infection from a host-oriented view. The knowledge gained about the entomopathogenicity of plant-beneficial pseudomonads gives hope for their future application in agriculture to protect plants not only against plant diseases but also against insect pests.
Resumo:
Following perturbation, an ecosystem (flora, fauna, soil) should evolve as a function of time at a rate conditioned by external variables (relief, climate, geology). More recently, biogeomorphologists have focused upon the notion of co-development of geomorphic processes with ecosystems over very short through to very long (evolutionary) timescales. Alpine environments have been a particular focus of this co-development. However, work in this field has tended to adopt a simplified view of the relationship between perturbation and succession, including: how the landform and ecosystem itself conditions the impact of a perturbation to create a complex spatial response impact; and how perturbations are not simply ecosystem destroyers but can be a significant source of ecosystem resources. What this means is that at the within landform scale, there may well be a complex and dynamic topographic and sedimentological template that co-develops with soil, flora and fauna. Here, we present and test a conceptual model of this template for a subalpine alluvial fan. We combine detailed floristic inventory with soil inventory, determination of edaphic variables and analysis of historical aerial imagery. Spatial variation in the probability of perturbation of sites on the fan surface was associated with down fan variability in the across-fan distribution of fan ages, fan surface channel characteristics and fan surface sedimentology. Floristic survey confirmed that these edaphic factors distinguished site floristic richness and plant communities up until the point that the soil-vegetation system was sufficiently developed to sustain plant communities regardless of edaphic conditions. Thus, the primary explanatory variable was the estimated age of each site, which could be tied back into perturbation history and its spatial expression due to the geometry of the fan: distinct plant communities were emergent both across fan and down fan, a distribution maintained by the way in which the fan dissipates potentially perturbing events.
Resumo:
Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils.
Resumo:
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.
Resumo:
Controlling external compound entrance is essential for plant survival. To set up an efficient and selective sorting of nutrients, free diffusion via the apoplast in vascular plants is blocked at the level of the endodermis. Although we have learned a lot about endodermal specification in the last years, information regarding its differentiation is still very limited. A differentiated endodermal cell can be defined by the presence of the "Casparian strip" (CS), a cell wall modification described first by Robert Caspary in 1865. While the anatomical description of CS in many vascular plants has been very detailed, we still lack molecular information about the establishment of the Casparian strips and their actual function in roots. The recent isolation of a novel protein family, the CASPs, that localizes precisely to a domain of the plasma membrane underneath the CS represents an excellent point of entry to explore CS function and formation. In addition, it has been shown that the endodermis contains transporters that are localized to either the central (stele-facing) or peripheral (soil-facing) plasma membranes. These features suggest that the endodermis functions as a polar plant epithelium.
Resumo:
Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.
Resumo:
Theory has long predicted allocation patterns for plant defense against herbivory, but only recently have both above- and belowground plant defenses been considered simultaneously. Milkweeds in the genus Asclepias are a classic chemically defended clade of plants with toxic cardenolides (cardiac glycosides) and pressurized latex employed as anti-herbivore weapons. Here we combine a comparative approach to investigate broadscale patterns in allocation to root vs. shoot defenses across species with a species-specific experimental approach to identify the consequences of defense allocational shifts on a specialist herbivore. Our results show phylogenetic conservatism for inducibility of shoot cardenolides by an aboveground herbivore, with only four closely related tropical species showing significant induction; the eight temperate species examined were not inducible. Allocation to root and shoot cardenolides was positively correlated across species, and this relationship was maintained after accounting for phylogenetic nonindependence. In contrast to long-standing theoretical predictions, we found no evidence for a trade-off between constitutive and induced cardenolides; indeed the two were positively correlated across species in both roots and shoots. Finally, specialist root and shoot herbivores of common milkweed (A. syriaca) had opposing effects on latex production, and these effects had consequences for caterpillar growth consistent with latex providing resistance. Although cardenolides were not affected by our treatments, A. syriaca allocated 40% more cardenolides to shoots over roots. We conclude that constitutive and inducible defenses are not trading off across plant species, and shoots of Asclepias are more inducible than roots. Phylogenetic conservatism cannot explain the observed patterns of cardenolide levels across species, but inducibility per se was conserved in a tropical clade. Finally, given that above- and belowground herbivores can systemically alter the defensive phenotype of plants, we concur with recent calls for a whole-plant perspective in testing models of plant defense allocation.
Resumo:
Some bacteria have the capacity to reduce incidence and severity of plant diseases either by inhibiting the pathogen or by modulating the resistance response of the plant. Plants dispose of different resistance mechanisms that are influenced by the biotic and abiotic environment. The present experiments explored the effects of biocontrol strains of Pseudomonas fluorescens on the resistance of wheat varieties against brown rust disease caused by Puccinia triticina. Root inoculation with biocontrol pseudomonads reduced the disease severity on the leaves. The plant response depended on the genotype of both the microbes and the wheat varieties, suggesting a straight interaction at the molecular level.
Resumo:
The root-colonizing bacterium Pseudomonas fluorescens CHA0 was used to construct an oxygen-responsive biosensor. An anaerobically inducible promoter of Pseudomonas aeruginosa, which depends on the FNR (fumarate and nitrate reductase regulation)-like transcriptional regulator ANR (anaerobic regulation of arginine deiminase and nitrate reductase pathways), was fused to the structural lacZ gene of Escherichia coli. By inserting the reporter fusion into the chromosomal attTn7 site of P. fluorescens CHA0 by using a mini-Tn7 transposon, the reporter strain, CHA900, was obtained. Grown in glutamate-yeast extract medium in an oxystat at defined oxygen levels, the biosensor CHA900 responded to a decrease in oxygen concentration from 210 x 10(2) Pa to 2 x 10(2) Pa of O(2) by a nearly 100-fold increase in beta-galactosidase activity. Half-maximal induction of the reporter occurred at about 5 x 10(2) Pa. This dose response closely resembles that found for E. coli promoters which are activated by the FNR protein. In a carbon-free buffer or in bulk soil, the biosensor CHA900 still responded to a decrease in oxygen concentration, although here induction was about 10 times lower and the low oxygen response was gradually lost within 3 days. Introduced into a barley-soil microcosm, the biosensor could report decreasing oxygen concentrations in the rhizosphere for a 6-day period. When the water content in the microcosm was raised from 60% to 85% of field capacity, expression of the reporter gene was elevated about twofold above a basal level after 2 days of incubation, suggesting that a water content of 85% caused mild anoxia. Increased compaction of the soil was shown to have a faster and more dramatic effect on the expression of the oxygen reporter than soil water content alone, indicating that factors other than the water-filled pore space influenced the oxygen status of the soil. These experiments illustrate the utility of the biosensor for detecting low oxygen concentrations in the rhizosphere and other soil habitats.
Resumo:
Similar to animal hormones, classic plant hormones are small organic molecules that regulate physiological and developmental processes. In development, this often involves the regulation of growth through the control of cell size or division. The plant hormones auxin and brassinosteroid modulate both cell expansion and proliferation and are known for their overlapping activities in physiological assays. Recent molecular genetic analyses in the model plant Arabidopsis suggest that this reflects interdependent and often synergistic action of the two hormone pathways. Such pathway interactions probably occur through the combinatorial regulation of common target genes by auxin- and brassinosteroid-controlled transcription factors. Moreover, auxin and brassinosteroid signaling and biosynthesis and auxin transport might be linked by an emerging upstream connection involving calcium-calmodulin and phosphoinositide signaling.
Resumo:
The antifungal compound 2,4-diacetylphloroglucinol (Phl) contributes to biocontrol in pseudomonads, but whether or not Phl(+) biocontrol pseudomonads display higher plant-protecting activity than Phl(-) biocontrol pseudomonads remains to be demonstrated. This issue was addressed by assessing 230 biocontrol fluorescent pseudomonads selected from a collection of 3132 bacterial isolates obtained from 63 soils worldwide. One-third of the biocontrol pseudomonads were Phl(+) and almost all Phl(+) isolates also produced hydrogen cyanide (HCN). The only Phl(+) HCN(-) strain did harbor hcn genes, but with the deletion of a 134 bp hcnC fragment corresponding to an ADP-binding motif. Statistical analysis of biocontrol isolate distributions indicated that Phl production ability was associated with superior disease suppression activity in the Pythium-cucumber and Fusarium-tomato pathosystems, but this was also the case with HCN production ability. However, HCN significance was not as strong, as indicated both by the comparison of Phl(-) HCN(+) and Phl(-) HCN(-) strains and by correlation analyses. This is the first population-level demonstration of the higher plant-protecting activity of Phl(+) biocontrol pseudomonads in comparison with Phl(-) biocontrol pseudomonads.