96 resultados para partition in micellar phase
Resumo:
Introduction: The pharmaceutical aspects of drug administration in clinical trials receive poor consideration compared with the important attention devoted to the analytical and mathematical aspects of biological sample exploitation. During PK calculations, many researchers merely use for dose the nominal amount declared, overlooking the noticeable biases that may result in the assessment of PK parameters. The aim of this work was to evaluate the biases related to doses injected of a biosimilar drug in 2 Phase I clinical trials. Patients (or Materials) and Methods: In trial A, 12 healthy volunteers received different doses of a biosimilar of interferon beta-1a by either subcutaneous (SC) or intravenous (IV) injection. The doses were prepared by partially emptying 0.5-mL syringes supplied by the manufacturer (drop count procedure). In trial B, 12 healthy volunteers received 3 different formulations of the drug by IV injection (biosimilar without albumin [HSA], biosimilar with HSA and original brand [Rebif®]) and 2 different formulations as multiple SC injections (biosimilar HSA-free and original brand). In both trials, the actual dose administered was calculated as: D = C·V - losses. The product titer C was assessed by ELISA. The volume administered IV was assessed by weighting. Losses were evaluated by in vitro experiments. Finally, the binding of 125I-interferon to HSA was evaluated by counting the free and HSA complexed molecule fractions separated by gel filtration. Results: Interferon was not significantly adsorbed onto the lines used for its IV administration. In trial A, the titer was very close to the one declared (96 ± 7%). In trial B, it differed significantly (156 ± 10% for biosimilar with/without HSA and 123 ± 5% for original formulation). In trial A, the dose actually administered showed a large variability. The real injected volume could be biased up to 75% compared with the theoretical volume (for the lower dose administered [ie, 0.03 mL]). This was mainly attributed to a partial re-aspiration of the drug solution before withdrawing the syringe needle. A strict procedure was therefore applied in trial B to avoid these inaccuracies. Finally, in trial B, 125I-Interferon beta-1a binding to HSA appeared time dependent and slow, reaching 50% after 16-hour incubation, which is close to steady state reported for the comparator Rebif®. Conclusion: These practical examples (especially biases on actual titer and volume injected) illustrate that actual dose assessment deserves attention to ensure accuracy for estimates of clearance and distribution volume in the scientific literature and for registration purposes, especially for bioequivalence studies.
Resumo:
Interest in marine natural products has allowed the discovery of new drugs and trabectedin (ET-743, Yondelis), derived from the marine tunicate Ecteinascidia turbinata, was approved for clinical use in 2007. It binds to the DNA minor groove leading to interferences with the intracellular transcription pathways and DNA-repair proteins. In vitro antitumor activity was demonstrated against various cancer cell lines and soft tissue sarcoma cell lines. In phase I studies tumor responses were observed also in osteosarcomas and different soft tissue sarcoma subtypes. The most common toxicities were myelosuppression and transient elevation of liver function tests, which could be reduced by dexamethasone premedication. The efficacy of trabectedin was established in three phase II studies where it was administered at 1.5 mg/m2 as a 24 h intravenous infusion repeated every three weeks, in previously treated patients. The objective response rate was 3.7%-8.3% and the tumor control rate (which included complete response, partial response and stable disease) was obtained in half of patients for a median overall survival reaching 12 months. In nonpretreated patients the overall response rate was 17%. Twenty-four percent of patients were without progression at six months. The median overall survival was almost 16 months with 72% surviving at one year. Predictive factors of response are being explored to identify patients who are most likely to respond to trabectedin. Combination with other agents are currently studied with promising results. In summary trabectedin is an active new chemotherapeutic agents that has demonstrated its role in the armamentarium of treatments for patients with sarcomas.
Resumo:
Optimal vaccine strategies must be identified for improving T-cell vaccination against infectious and malignant diseases. MelQbG10 is a virus-like nano-particle loaded with A-type CpG-oligonucleotides (CpG-ODN) and coupled to peptide(16-35) derived from Melan-A/MART-1. In this phase IIa clinical study, four groups of stage III-IV melanoma patients were vaccinated with MelQbG10, given (i) with IFA (Montanide) s.c.; (ii) with IFA s.c. and topical Imiquimod; (iii) i.d. with topical Imiquimod; or (iv) as intralymph node injection. In total, 16/21 (76%) patients generated ex vivo detectable Melan-A/MART-1-specific T-cell responses. T-cell frequencies were significantly higher when IFA was used as adjuvant, resulting in detectable T-cell responses in all (11/11) patients, with predominant generation of effector-memory-phenotype cells. In turn, Imiquimod induced higher proportions of central-memory-phenotype cells and increased percentages of CD127(+) (IL-7R) T cells. Direct injection of MelQbG10 into lymph nodes resulted in lower T-cell frequencies, associated with lower proportions of memory and effector-phenotype T cells. Swelling of vaccine site draining lymph nodes, and increased glucose uptake at PET/CT was observed in 13/15 (87%) of evaluable patients, reflecting vaccine triggered immune reactions in lymph nodes. We conclude that the simultaneous use of both Imiquimod and CpG-ODN induced combined memory and effector CD8(+) T-cell responses.
Resumo:
Contralesional brain connectivity plasticity was previously reported after stroke. This study aims at disentangling the biological mechanisms underlying connectivity plasticity in the uninjured motor network after an ischemic lesion. In particular, we measured generalized fractional anisotropy (GFA) and magnetization transfer ratio (MTR) to assess whether poststroke connectivity remodeling depends on axonal and/or myelin changes. Diffusion-spectrum imaging and magnetization transfer MRI at 3T were performed in 10 patients in acute phase, at 1 and 6 months after stroke, which was affecting motor cortical and/or subcortical areas. Ten age- and gender-matched healthy volunteers were scanned 1 month apart for longitudinal comparison. Clinical assessment was also performed in patients prior to magnetic resonance imaging (MRI). In the contralesional hemisphere, average measures and tract-based quantitative analysis of GFA and MTR were performed to assess axonal integrity and myelination along motor connections as well as their variations in time. Mean and tract-based measures of MTR and GFA showed significant changes in a number of contralesional motor connections, confirming both axonal and myelin plasticity in our cohort of patients. Moreover, density-derived features (peak height, standard deviation, and skewness) of GFA and MTR along the tracts showed additional correlation with clinical scores than mean values. These findings reveal the interplay between contralateral myelin and axonal remodeling after stroke.
Resumo:
Having determined in a phase I study the maximum tolerated dose of high-dose ifosfamide combined with high-dose doxorubicin, we now report the long-term results of a phase II trial in advanced soft-tissue sarcomas. Forty-six patients with locally advanced or metastatic soft-tissue sarcomas were included, with age <60 years and all except one in good performance status (0 or 1). The chemotherapy treatment consisted of ifosfamide 10 g m(-2) (continuous infusion for 5 days), doxorubicin 30 mg m(-2) day(-1) x 3 (total dose 90 mg m(-2)), mesna and granulocyte-colony stimulating factor. Cycles were repeated every 21 days. A median of 4 (1-6) cycles per patient was administered. Twenty-two patients responded to therapy, including three complete responders and 19 partial responders for an overall response rate of 48% (95% CI: 33-63%). The response rate was not different between localised and metastatic diseases or between histological types, but was higher in grade 3 tumours. Median overall survival was 19 months. Salvage therapies (surgery and/or radiotherapy) were performed in 43% of patients and found to be the most significant predictor for favourable survival (exploratory multivariate analysis). Haematological toxicity was severe, including grade > or =3 neutropenia in 59%, thrombopenia in 39% and anaemia in 27% of cycles. Three patients experienced grade 3 neurotoxicity and one patient died of septic shock. This high-dose regimen is toxic but nonetheless feasible in multicentre settings in non elderly patients with good performance status. A high response rate was obtained. Prolonged survival was mainly a function of salvage therapies.
Resumo:
Because we live in an extremely complex social environment, people require the ability to memorize hundreds or thousands of social stimuli. The aim of this study was to investigate the effect of multiple repetitions on the processing of names and faces varying in terms of pre-experimental familiarity. We measured both behavioral and electrophysiological responses to self-, famous and unknown names and faces in three phases of the experiment (in every phase, each type of stimuli was repeated a pre-determined number of times). We found that the negative brain potential in posterior scalp sites observed approximately 170 ms after the stimulus onset (N170) was insensitive to pre-experimental familiarity but showed slight enhancement with each repetition. The negative wave in the inferior-temporal regions observed at approximately 250 ms (N250) was affected by both pre-experimental (famous>unknown) and intra-experimental familiarity (the more repetitions, the larger N250). In addition, N170 and N250 for names were larger in the left inferior-temporal region, whereas right-hemispheric or bilateral patterns of activity for faces were observed. The subsequent presentations of famous and unknown names and faces were also associated with higher amplitudes of the positive waveform in the central-parietal sites analyzed in the 320-900 ms time-window (P300). In contrast, P300 remained unchanged after the subsequent presentations of self-name and self-face. Moreover, the P300 for unknown faces grew more quickly than for unknown names. The latter suggests that the process of learning faces is more effective than learning names, possibly because faces carry more semantic information.
Resumo:
The survival, physiology and gene expression profile of the phenanthrene-degrading Sphingomonas sp. LH128 was examined after an extended period of complete nutrient starvation and compared with a non-starved population that had been harvested in exponential phase. After 6 months of starvation in an isotonic solution, only 5 % of the initial population formed culturable cells. Microscopic observation of GFP fluorescent cells, however, suggested that a larger fraction of cells (up to 80 %) were still alive and apparently had entered a viable but non-culturable (VBNC) state. The strain displayed several cellular and genetic adaptive strategies to survive long-term starvation. Flow cytometry, microscopic observation and fatty acid methyl ester (FAME) analysis showed a reduction in cell size, a change in cell shape and an increase in the degree of membrane fatty acid saturation. Transcriptome analysis showed decreased expression of genes involved in ribosomal protein biosynthesis, chromosomal replication, cell division and aromatic catabolism, increased expression of genes involved in regulation of gene expression and efflux systems, genetic translocations, and degradation of rRNA and fatty acids. Those phenotypic and transcriptomic changes were not observed after 4 h of starvation. Despite the starvation situation, the polycyclic aromatic hydrocarbon (PAH) catabolic activity was immediate upon exposure to phenanthrene. We conclude that a large fraction of cells maintain viability after an extended period of starvation apparently due to tuning the expression of a wide variety of cellular processes. Due to these survival attributes, bacteria of the genus Sphingomonas, like strain LH128, could be considered as suitable targets for use in remediation of nutrient-poor PAH-contaminated environments.
Resumo:
ICEclc is a mobile genetic element found in two copies on the chromosome of the bacterium Pseudomonas knackmussii B13. ICEclc harbors genes encoding metabolic pathways for the degradation of chlorocatechols (CLC) and 2-aminophenol (2AP). At low frequencies, ICEclc excises from the chromosome, closes into a circular DNA molecule which can transfer to another bacterium via conjugation. Once in the recipient cell, ICEclc can reintegrate into the chromosome by site-specific recombination. This thesis aimed at identifying the regulatory network underlying the decisions for ICEclc horizontal transfer (HGT). The first chapter is an introduction on integrative and conjugative elements (ICEs) more in general, of which ICEclc is one example. In particular I emphasized the current knowledge of regulation and conjugation machineries of the different classes of ICE. In the second chapter, I describe a transcriptional analysis using microarrays and other experiments to understand expression of ICEclc in exponential and stationary phase. By overlaying transcriptomic profiles with Northern hybridizations and RT- PCR data, we established a transcription map for the entire core region of ICEclc, a region assumed to encode the ICE conjugation process. We also demonstrated how transcription of the ICEclc core is maximal in stationary phase, which correlates to expression of reporter genes fused to key ICEclc promoters. In the third chapter, I present a transcriptome analysis of ICEclc in a variety of different host species, in order to explore whether there are species-specific differences. In the fourth chapter, I focus on the role of a curious ICEclc-encoded TetR-type transcriptional repressor. We find that this gene, which we name mfsR, not only controls its own expression but that of a set of genes for a putative multi-drug efflux pump (mfsABC) as well. By using a combination of biochemical and molecular biology techniques, I could show that MfsR specifically binds to operator boxes in two ICEclc promoters (PmfsR and PmfsA), inhibiting the transcription of both the mfsR and mfsABC-orf38184 operons. Although we could not detect a clear phenotype of an mfsABC deletion, we discuss the implications of pump gene reorganizations in ICEclc and close relatives. In the fifth chapter, we find that mfsR not only controls its own expression and that of the mfsABC operon, but is also indirectly controlling ICEclc transfer. Using gene deletions, microarrays, transfer assays and microscopy-based reporter fusions, we demonstrate that mfsR actually controls a small operon of three regulatory genes. The last gene of this mfsR operon, orf17162, encodes a LysR-type activator that when deleted strongly impairs ICEclc transfer. Interestingly, deletion of mfsR leads to transfer competence in almost all cells, thereby overruling the bistability process in the wild-type. In the final sixth chapter, I discuss the relevance of the present thesis and the resulting perspectives for future studies.
Resumo:
RATIONALE AND OBJECTIVES: To determine optimum spatial resolution when imaging peripheral arteries with magnetic resonance angiography (MRA). MATERIALS AND METHODS: Eight vessel diameters ranging from 1.0 to 8.0 mm were simulated in a vascular phantom. A total of 40 three-dimensional flash MRA sequences were acquired with incremental variations of fields of view, matrix size, and slice thickness. The accurately known eight diameters were combined pairwise to generate 22 "exact" degrees of stenosis ranging from 42% to 87%. Then, the diameters were measured in the MRA images by three independent observers and with quantitative angiography (QA) software and used to compute the degrees of stenosis corresponding to the 22 "exact" ones. The accuracy and reproducibility of vessel diameter measurements and stenosis calculations were assessed for vessel size ranging from 6 to 8 mm (iliac artery), 4 to 5 mm (femoro-popliteal arteries), and 1 to 3 mm (infrapopliteal arteries). Maximum pixel dimension and slice thickness to obtain a mean error in stenosis evaluation of less than 10% were determined by linear regression analysis. RESULTS: Mean errors on stenosis quantification were 8.8% +/- 6.3% for 6- to 8-mm vessels, 15.5% +/- 8.2% for 4- to 5-mm vessels, and 18.9% +/- 7.5% for 1- to 3-mm vessels. Mean errors on stenosis calculation were 12.3% +/- 8.2% for observers and 11.4% +/- 15.1% for QA software (P = .0342). To evaluate stenosis with a mean error of less than 10%, maximum pixel surface, the pixel size in the phase direction, and the slice thickness should be less than 1.56 mm2, 1.34 mm, 1.70 mm, respectively (voxel size 2.65 mm3) for 6- to 8-mm vessels; 1.31 mm2, 1.10 mm, 1.34 mm (voxel size 1.76 mm3), for 4- to 5-mm vessels; and 1.17 mm2, 0.90 mm, 0.9 mm (voxel size 1.05 mm3) for 1- to 3-mm vessels. CONCLUSION: Higher spatial resolution than currently used should be selected for imaging peripheral vessels.
Resumo:
GnRH neurons provide the primary driving force upon the neuroendocrine reproductive axis. Here we used GnV-3 cells, a model of conditionally immortalized GnRH-expressing neurons, to perform an analysis of cell cycle and compare the gene expression profile of proliferating cells with differentiated cells. In the proliferation medium, 45 ± 1.5% of GnV-3 cells are in S-phase by FACS analysis. In the differentiation medium, only 9 ± 0.9% of them are in S-phase, and they acquire the characteristic bipolar shape displayed by preoptic GnRH neurons in vivo. In addition, GnV-3 cells in the differentiated state exhibit electrophysiological properties characteristic of neurons. Transcriptomic analysis identified up-regulation of 1931 genes and down-regulation of 1270 genes in cells grown in the differentiation medium compared to cells in the proliferation medium. Subsequent gene ontology study indicated that genes over-expressed in proliferating GnV-3 cells were mainly involved in cell cycle regulations, whereas genes over-expressed in differentiated cells were mainly involved in processes of differentiation, neurogenesis and neuronal morphogenesis. Taken together, these data demonstrate the occurrence of morphological and physiological changes in GnV-3 cells between the proliferating and the differentiated state. Moreover, the genes differentially regulated between these two different states are providing novel pathways potentially important for a better understanding of the physiology of mature GnRH neurons.
Resumo:
OBJECTIVE: Eye drops of aganirsen, an antisense oligonucleotide preventing insulin receptor substrate-1 expression, inhibited corneal neovascularization in a previous dose-finding phase II study. We aimed to confirm these results in a phase III study and investigated a potential clinical benefit on visual acuity (VA), quality of life (QoL), and need for transplantation. DESIGN: Multicenter, double-masked, randomized, placebo-controlled phase III study. PARTICIPANTS: Analysis of 69 patients with keratitis-related progressive corneal neovascularization randomized to aganirsen (34 patients) or placebo (35 patients). Patients applied aganirsen eye drops (86 μg/day/eye) or placebo twice daily for 90 days and were followed up to day 180. MAIN OUTCOME MEASURES: The primary end point was VA. Secondary end points included area of pathologic corneal neovascularization, need for transplantation, risk of graft rejection, and QoL. RESULTS: Although no significant differences in VA scores between groups were observed, aganirsen significantly reduced the relative corneal neovascularization area after 90 days by 26.20% (P = 0.014). This improvement persisted after 180 days (26.67%, P = 0.012). Aganirsen tended to lower the transplantation need in the intent-to-treat (ITT) population at day 180 (P = 0.087). In patients with viral keratitis and central neovascularization, a significant reduction in transplantation need was achieved (P = 0.048). No significant differences between groups were observed in the risk of graft rejection. However, aganirsen tended to decrease this risk in patients with traumatic/viral keratitis (P = 0.162) at day 90. The QoL analyses revealed a significant improvement with aganirsen in composite and near activity subscores (P = 0.039 and 0.026, respectively) at day 90 in the per protocol population. Ocular and treatment-related treatment-emergent adverse events (TEAEs) were reported in a lower percentage with aganirsen compared with placebo. Only 3 serious TEAEs (2 with aganirsen and 1 with placebo) were considered treatment-related. CONCLUSIONS: This first phase III study on a topical inhibitor of corneal angiogenesis showed that aganirsen eye drops significantly inhibited corneal neovascularization in patients with keratitis. The need for transplantation was significantly reduced in patients with viral keratitis and central neovascularization. Topical application of aganirsen was safe and well tolerated.
Resumo:
PURPOSE: Ipilimumab is a monoclonal antibody that blocks the immune-inhibitory interaction between CTL antigen 4 (CTLA-4) and its ligands on T cells. Clinical trials in cancer patients with ipilimumab have shown promising antitumor activity, particularly in patients with advanced melanoma. Often, tumor regressions in these patients are correlated with immune-related side effects such as dermatitis, enterocolitis, and hypophysitis. Although these reactions are believed to be immune-mediated, the antigenic targets for the cellular or humoral immune response are not known. EXPERIMENTAL DESIGN: We enrolled patients with advanced melanoma in a phase II study with ipilimumab. One of these patients experienced a complete remission of his tumor. The specificity and functional properties of CD8-positive T cells in his peripheral blood, in regressing tumor tissue, and at the site of an immune-mediated skin rash were investigated. RESULTS: Regressing tumor tissue was infiltrated with CD8-positive T cells, a high proportion of which were specific for Melan-A. The skin rash was similarly infiltrated with Melan-A-specific CD8-positive T cells, and a dramatic (>30-fold) increase in Melan-A-specific CD8-positive T cells was apparent in peripheral blood. These cells had an effector phenotype and lysed Melan-A-expressing tumor cells. CONCLUSIONS: Our results show that Melan-A may be a major target for both the autoimmune and antitumor reactions in patients treated with anti-CTLA-4, and describe for the first time the antigen specificity of CD8-positive T cells that mediate tumor rejection in a patient undergoing treatment with an anti-CTLA-4 antibody. These findings may allow a better integration of ipilimumab into other forms of immunotherapy.
Resumo:
Abstract : Host-Cell Factor 1 (HCF-1) was first discovered in the study of the herpes simplex virus (HSV) infection. HCF-1 is one of the two cellular proteins that compose the VP16-induced complex, a key activator of HSV lytic infection. lncleed, when HSV infects human cells, it is able to enter two modes of infection: lytic or latent. The V`P16-induced complex promotes the lytic mode and in so doing the virus targets important cellular regulatory proteins, such as HCF-1, to manipulate the status of the infected cell. Indeed, HCF-1 regulates human cell proliferation and the cell cycle at different steps. In human, HCF-1 is unusual in that it undergoes a process of proteolytic maturation that results from cleavages at six centrally located 26 amino acid repeats called HCF-1pro repeats. This generates a heterodimeric complex of stably associated amino- (HCF-1n) and carboxy- (HCF-1c) terminal subunits. The absence of the HCF-1 N or HCF-1; subunit leads predominantly to either G1 or M phase defects, respectively. We have hypothesized that HCF-1 forms a heterodimeric complex to permit communication between the two subunits of HCF-1 involved in regulating different phases of the cell cycle. Indeed, there is evidence for such inter-subunit communication because a point mutation called P134S in the HCF-1N subunit in the temperature-sensitive hamster cell line tsBN67 causes, addition to G1- phase defects associated with the HCF-1n subunit, M-phase defects similar to the defects seen upon loss of HCF-1 function. Furthermore, inhibition of the proteolytic maturation of HCF-1 by deletion of the six HCF-1pro repeats (HCF-1Aimo) also leads to M-phase defects, specifically cytokinesis defects leading to binucleation, indicating that there is loss of HCF-15 function in the absence of HCF-1 maturation. I demonstrate that individual point mutations in each of the six HCF-1pro repeats that prevent HCF-1 proteolytic maturation also lead to binucleation; however, this defect can be latgely rescued by the presence of just one HCF-1pRO sequence in I-ICF»1. These results argue that processing itself is important for the HCF-1g function. In fact, until now, the hypothesis was that the proteolytic processing per se is more important for HCF-1C function than the proteolytic processing region. But I show that processing per se is not sufticient to rescue multinucleation, but that the HCF-lpm sequence itself is crucial. This discovery leads to the conclusion that the I-ICF-1pRO repeats have an additional function important for HCF-le function. From the studies of others, one potential function of the HCF-lrxo tepeats is as a binding site for O-link NAcetyl glycosamine tansferase (OGT) to glycosylate an HCF-1n-sunbunit region called the Basic region. This new function suggests the Basic region of HCF-1n is also implicated in the communication between the two subunits. This inter-subunit communication was analyzed in more detail with the studies of the Pl34S mutation and the residues 382-450 region of HCF-l that when removed prevents HCF-l subunit association. I demonstrate that the point mutation also leads to a binucleation defect in Hela cells as well as in the tsBN67 cells. In addition, the effect of this mutation on the regulation of HCF-1c activity seems to interfere with that of the HCF-lpgg repeats because the sum of the deletion of the proteolytic processing region and the point mutation surprisingly leads to re-establishment of correct cytokinesis. The study of the 382-450 HCF-lN region also yielded surprising results. This region important for the association of the two subunits is also important for both HCF-1c function in M phase and G1 phase progression. Thus, I have discovered two main functions of this region: its role in the regulation of HCF-lc function in M phase and its involvement in the regulation of G1/S phase ?- an HCF-1n function. These results support the importance of inter-subunit communication in HCF-1 functions. My research illuminates the understanding of the interaction of the two subunits by showing that the whole HCF-1n subunit is involved in the inter-subunit communication in order to regulate HCF-1c function. For this work, I was concentrated on the study of cytokinesis; the first phenotype showing the role of HCF-1c in the M phase. Then, I extended the study of the M phase with analysis of steps earlier to cytokinesis. Because some defects in the chromosome segregation was already described in the absence of HCF-1, I decided to continue the study of M phase by checking effects on the chromosome segregation. I showed that the HCF-1n subunit and HCF-1pro repeats are both important for this key step of M phase. I show that the binucleation phenotype resulting from deletion or mutation in HCF-1pro repeats, Pl34S point mutation or the lack of the region 382-450 are correlated with micronuclei, and chromosome segregation and alignment defects. This suggests that HCF«lç already regulates M phase during an early step and could be involved in the complex regulation of chromosome segregation. Because one of the major roles of HCF-1 is to be a transcription regulator, I also checked the capacity of HCF-1 to bind to the chromatin in my different cell lines. All my recombinant proteins can bind the chromatin, except for, as previously described, the HCF-1 with the P134S point mutation, This suggests that the binding of HCF-1 to the chromatin is not dependant to the Basic and proteolytic regions but more to the Kelch domain. Thus, if the function of HCF-ig in M phase is dependant to its chromatin association, the intercommunication and the proteolytic region are not involved in the ability to bind to the chromatin but more to bind to the right place of the chromatin or to be associated with the co-factors. Résumé : L'étude de l'infection par le virus Herpes Simplex (HSV) a permis la découverte de la protéine HCF-1 (Host-Cell Factor). HCF-1 est une des protéines cellulaires qui font partie du complexe induit par VP16 ; ce complexe est la clef pour l'activation de la phase lytique de HSV. Afin de manipuler les cellules infectées, le complexe induit pas le VPIG devrait donc cibler les protéines importantes pour la régulation cellulaire, telles que la protéine HCF-1. Cette dernière s'avère donc être un senseur pour la cellule et devrait également jouer un rôle de régulation lors des différentes phases du cycle cellulaire. Chez l'humain, HCF-1 a la particularité de devoir passer par une phase de maturation pour devenir active. Lors de cette maturation, la protéine subit une coupure protéolytique au niveau de six répétitions composées de 26 acides aminés, appelé HCF-1pro repeats. Cette coupure engendre la formation d'un complexe formé de deux sous-unités, HCF-1n et HCF-1c, associées l'une à l'autre de façon stable. Enlever la sous-unité HCF-IN ou C entraîne respectivement des défauts dans la phase G1 et M. Nous pensons donc que HCF-1 forme un complexe hétérodimérique afin de permettre la communication entre les molécules impliquées dans la régulation des différentes phases du cycle cellulaire. Cette hypothèse est déduite suite à deux études: l'une réalisée sur la lignée cellulaire tsBN67 et l'autre portant sur l'inhibition de la maturation protéolytique. La lignée cellulaire tsBN67, sensible à la température, porte la mutation Pl 345 dans la sous-unité HCF-1n. Cette mutation, en plus d'occasionner des défauts dans la phase G1 (défauts liés à la sous-unité HCF-1N), a aussi pour conséquence d'entrainer des défauts dans la phase M, défauts similaires à ceux dus a la perte de la sous-unité HCF-1c. Quant à la maturation protéolytique, l'absence de la région de la protéolyse provoque la binucléation, défaut lié à la cytokinèse, indiquant la perte de la fonction de la sous-unité HCF-1c. Au cours de ma thèse, j'ai démontré que des mutations dans les HCF-1=no repeats, qui bloquent la protéolyse, engendrent la binucléation ; cependant ce défaut peut être corrigé pas l'ajout d'un HCF-1pro repeat dans un HCF-1 ne contenant pas la région protéolytique. Ces résultats soutiennent l'idée que la région protéolytique est importante pour le bon fonctionnement de HCF-1c. En réalité jusqu'a maintenant on supposait que le mécanisme de coupure était plus important que la région impliquée pour la régulation de la fonction de HCF-1;. Mais mon étude montre que la protéolyse n'est pas suffisante pour éviter la binucléation ; en effet, les HCF-1pro repeats semblent jouer le rôle essentiel dans le cycle cellulaire. Cette découverte conduit à la conclusion que les HCF-1pro repeats ont sûrement une fonction autre qui serait cruciale pour la foncton de HCF-1c. Une des fonctions possibles est d'être le site de liaison de l'O-linked N-acetylglucosamine transférase (OGT) qui glycosylerait la région Basique de HCF-1n. Cette nouvelle fonction suggère que la région Basique est aussi impliquée dans la communication entre les deux sous- unités. L'intercommunication entre les deux sous-unités ai été d'ailleurs analysée plus en détail dans mon travail à travers l'étude de la mutation Pl34S et de la région 382-450, essentielle pour l'association des deux sous»unités. J'ai ainsi démontré que la mutation P134S entraînait aussi des défauts dans la cytokinése dans la lignée cellulaire Hela, de plus, son influence sur HCF-1c semble interférer avec celle de la région protéolytique. En effet, la superposition de ces deux modifications dans HCF-1 conduit au rétablissement d'une cytokinése correcte. Concernant la région 382 à 450, les résultats ont été assez surprenants, la perte de cette région provoque l'arrêt du cycle en G1 et la binucléation, ce qui tend à prouver son importance pour le bon fonctionnement de HCF-1n et de HCF-1c. Cette découverte appuie par conséquent l'hypotl1èse d'une intercommunicatzion entre les deux sous-unités mettant en jeu les différentes régions de HCF-1n. Grâce à mes recherches, j'ai pu améliorer la compréhension de l'interaction des deux sous-unités de HCF-1 en montrant que toutes les régions de HCF-1n sont engagées dans un processus d'intercommunication, dont le but est de réguler l'action de HCF-1c. J'ai également mis en évidence une nouvelle étape de la maturation de HCF-1 qui représente une phase importante pour l'activation de la fonction de HCF-1c. Afin de mettre à jour cette découverte, je me suis concentrée sur l'étude de l'impact de ces régions au niveau de la cytokinése qui fut le premier phénotype démontrant le rôle de HCF-1c dans la phase M. A ce jour, nous savons que HCF-1c joue un rôle dans la cytokinèse, nous ne connaissons pas encore sa fonction précise. Dans le but de cerner plus précisément cette fonction, j'ai investigué des étapes ultérieures ai la cytokinèse. Des défauts dans la ségrégation des chromosomes avaient déjà été observés, ai donc continué l'étude en prouvant que HCF-1n et les HCF-1pro repeats sont aussi importants pour le bon fonctionnement de cette étape clef également régulée par HCF-1c. J' ai aussi montré que la région 382-450 et la mutation P134S sont associées à un taux élevé de micronoyaux, de défauts dans la ségrégation des chromosomes. L'une des fonctions principales de HCF-1 étant la régulation de la transcription, j'ai aussi contrôlé la capacité de HCF-1 à se lier à la chromatine après insertion de mutations ou délétions dans HCF-1n et dans la région protéolytique. Or, à l'exception des HCF-1 contenant la mutation P134S, la sous-unité HCF-1c des HCF-1 tronquées se lie correctement à la chromatine. Cette constatation suggère que la liaison entre HCF-1c et chromatine n'est pas dépendante de la région Basique ou Protéolytique mais peut-être vraisemblablement de la région Kelch. Donc si le rôle de HCF-1c est dépendant de sa capacité â activer la transcription, l'intercommunication entre les deux sous-unités et la région protéolytique joueraient un rôle important non pas dans son habileté à se lier à la chromatine, mais dans la capacité de HCF-1 à s'associer aux co-facteurs ou à se placer sur les bonnes régions du génome.
Resumo:
Fanconi anemia (FA) is a genetically heterogeneous chromosome instability syndrome associated with congenital abnormalities, bone marrow failure, and cancer predisposition. Eight FA proteins form a nuclear core complex, which promotes tolerance of DNA lesions in S phase, but the underlying mechanisms are still elusive. We reported recently that the FA core complex protein FANCM can translocate Holliday junctions. Here we show that FANCM promotes reversal of model replication forks via concerted displacement and annealing of the nascent and parental DNA strands. Fork reversal by FANCM also occurs when the lagging strand template is partially single-stranded and bound by RPA. The combined fork reversal and branch migration activities of FANCM lead to extensive regression of model replication forks. These observations provide evidence that FANCM can remodel replication fork structures and suggest a mechanism by which FANCM could promote DNA damage tolerance in S phase
Resumo:
The pharmacokinetic profile of imatinib has been assessed in healthy subjects and in population studies among thousands of patients with CML or GIST. Imatinib is rapidly and extensively absorbed from the GI tract, reaching a peak plasma concentration (Cmax) within 1-4 h following administration. Imatinib bioavailability is high (98%) and independent of food intake. Imatinib undergoes rapid and extensive distribution into tissues, with minimal penetration into the central nervous system. In the circulation, it is approximately 95% bound to plasma proteins, principally α1-acid glycoprotein (AGP) and albumin. Imatinib undergoes metabolism in the liver via the cytochrome P450 enzyme system (CYP), with CYP3A4 being the main isoenzyme involved. The N-desmethyl metabolite CGP74588 is the major circulating active metabolite. The typical elimination half-life for imatinib is approximately 14-22 h. Imatinib is characterized by large inter-individual pharmacokinetic variability, which reflects in a wide spread of concentrations observed under standard dosage. Besides adherence, several factors have been shown to influence this variability, especially demographic characteristics (sex, age, body weight and disease diagnosis), blood count characteristics, enzyme activity (mainly CYP3A4), drug interactions, activity of efflux transporters and plasma levels of AGP. Additionally, recent retrospective studies have shown that drug exposure, reflected in either the area under the concentration-time curve (AUC) or more conveniently the trough level (Cmin), correlates with treatment outcomes. Increased toxicity has been associated with high plasma levels, and impaired clinical efficacy with low plasma levels. While no upper concentration limit has been formally established, a lower limit for imatinib Cmin of about 1000 ng/mL has been proposed repeatedly for improving outcomes in CML and GIST patients. Imatinib is licensed for use in chronic phase CML and GIST at a fixed dose of 400 mg once daily (600 mg in some other indications) despite substantial pharmacokinetic variability caused by both genetic and acquired factors. The dose can be modified on an individual basis in cases of insufficient response or substantial toxic effects. Imatinib would, however, meet traditional criteria for a therapeutic drug monitoring (TDM) program: long-term therapy, measurability, high inter-individual but restricted intra-individual variability, limited pharmacokinetic predictability, effect of drug interactions, consistent association between concentration and response, suggested therapeutic threshold, reversibility of effect and absence of early markers of efficacy and toxic effects. Large-scale, evidence-based assessments of drug concentration monitoring are therefore still warranted for the personalization of imatinib treatment.