127 resultados para multiple sclerosis,hippotherapy,equine-assisted therapies
Resumo:
AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.
Resumo:
BACKGROUND AND PURPOSE: Neuromyelitis optica (NMO) or Devic's disease is a rare inflammatory and demyelinating autoimmune disorder of the central nervous system (CNS) characterized by recurrent attacks of optic neuritis (ON) and longitudinally extensive transverse myelitis (LETM), which is distinct from multiple sclerosis (MS). The guidelines are designed to provide guidance for best clinical practice based on the current state of clinical and scientific knowledge. SEARCH STRATEGY: Evidence for this guideline was collected by searches for original articles, case reports and meta-analyses in the MEDLINE and Cochrane databases. In addition, clinical practice guidelines of professional neurological and rheumatological organizations were studied. RESULTS: Different diagnostic criteria for NMO diagnosis [Wingerchuk et al. Revised NMO criteria, 2006 and Miller et al. National Multiple Sclerosis Society (NMSS) task force criteria, 2008] and features potentially indicative of NMO facilitate the diagnosis. In addition, guidance for the work-up and diagnosis of spatially limited NMO spectrum disorders is provided by the task force. Due to lack of studies fulfilling requirement for the highest levels of evidence, the task force suggests concepts for treatment of acute exacerbations and attack prevention based on expert opinion. CONCLUSIONS: Studies on diagnosis and management of NMO fulfilling requirements for the highest levels of evidence (class I-III rating) are limited, and diagnostic and therapeutic concepts based on expert opinion and consensus of the task force members were assembled for this guideline.
Resumo:
In 2012, intramuscular midazolam appears as effective as intravenous lorezepam for the first line treatment of convulsive status epilepticus. Perampanel, a new anti-epileptic drug, will be soon available. Two oral treatments are now available for stroke prevention in atrial fibrillation setting. The methylphenidate and the Tai Chi could increase the walk capacity of patients suffering from Parkinson disease. A comprehensive cardiac work-up is essential for some congenital myopathy. A new drug against migraine seems free from vasoconstrictive effect. Antioxidants are harmful in Alzheimer disease. Some oral medication will be available for multiple sclerosis.
Resumo:
Purpose of review: This review discusses demyelinating events of the nervous system that have been associated with new immunomodulatory treatments, in particular monoclonal antibodies (mAbs). Recent findings: Natalizumab, a mAb targeting the alpha-4 integrins, which is efficient in relapsing-remitting multiple sclerosis, has been associated with progressive multifocal leukoencephalopathy (PML). We will review the putative mechanisms linking natalizumab with JC virus, the agent of PML. Efalizumab, a mAb targeting a member of the integrin family, CD11a, was approved for the treatment of psoriasis, but had to be withdrawn in 2009 because of the occurrence of three cases of PML. Rituximab, an anti-CD20 mAb, is used in different neoplastic and autoimmune diseases and may soon enter the pharmacopeia of multiple sclerosis. It has been suggested that rituximab is a risk factor for PML; however, evidence of such a link is unclear. Antitumor necrosis factor-alpha agents are used in several autoimmune diseases. Several cases of demyelinating events of the nervous system have been reported, prompting a heightened surveillance of treated patients. Recent data are reassuring, suggesting that the incidence of such events is relatively low. Summary: Neurologists must become familiar with neurological complications of new immunomodulatory treatments, a field situated at the interface of neurology, immunology and infection.
Resumo:
Purpose: To evaluate the safety-efficacy of Gamma Knife surgery (GKS) as a second treatment for classical trigeminal neuralgia (CTN), and the influence of prior microvascular decompression (MVD). Methods: Between July 1992 and November 2010, 737 patients have been operated with GKRS for ITN and prospectively evaluated in Timone University Hospital in Marseille, France. Among these, 54 patients had a previous history of MVD. Radiosurgery using a Gamma Knife (model B or C or Perfexion) was performed on the basis of on both MR and CT targeting. A single 4 mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.6 mm (range 3.9-11.9) anteriorly to the emergence of the nerve (retrogasserian target). A median maximum dose of 85 Gy (range 70-90) was delivered. Here, the 45 patients with previous MVD and a follow-up longer than one year are evaluated (the patients with megadolichobasilar artery compression and multiple sclerosis were excluded). Results: The median age in this series was 56.75 years (range 28.09-82.39). The median follow-up period was 39.48 months (range 14.10-144.65). All the patients had a past history of surgery, with at least one previous failed MVD, but also radiofrequency lesion (RFL) in 16 patients (35.6%), balloon microcompression in 7 (15.6%) and glycerol rhizotomy in 1 (2.2%). Thirty-five patients (77.8%) were initially pain free after GKS within a median time of 14 days (range 0, 180). Patients from this group had less probability of being pain free compared to our global population of essential trigeminal neuralgia without previous MVD history (p=0.010, hazard ratio of 0.64). Their probability of remaining pain free at 3, 5, 7 and 10 years was 66.5%, 59.1%, 59.1% and 44.3%, respectively. Twelve patients (34.3%) initially pain free experienced a recurrence with a median delay of 31.21 months (range 3.40-89.93). The hypoesthesia actuarial rate at 1 year was 9.1% and remained stable till 12 years with a median delay of onset of 8 months (range 8-8). Conclusions: Retrogasserian GKS proofed to be safe and effective on the long-term basis even after failed previous MVD. Even if the initial result of pain free was only 77.8%, the toxicity was low with only 9.1% hypoesthesia. No patient reported a bothersome hypoesthesia. The probability of maintaining pain relief in the long-term was of 44.3% at 10 years.
Resumo:
Patients with pathological laughter and crying have episodes of uncontrollable laughter, crying or both. Pathological laughter is a well-described entity secondary to various conditions such as multiple sclerosis, pseudo-bulbar palsy, cerebello-pontine angle tumours, clival chordomas and brainstem gliomas. Pathological crying is rare and there have been no previous reports of brainstem compression causing this entity. We report a patient who presented with pathological crying caused by a trigeminal schwannoma with a tumor-associated cyst indenting the pons. This case report confirms the involvement of the cortico-ponto-cerebellar pathways in the pathogenesis of pathological crying.
Resumo:
Introduction: Epstein-Barr Virus(EBV) has been repeatedly associatedwith multiple sclerosis (MS). Wehave previously shown that there is ahigh peripheral as well as intrathecalactivation of EBV-, but not cytomegalovirus(CMV)-specific CD8+ Tcells, early in the course of MS,strengthening the link between EBVand MS. However, the trigger of thisincreased EBV-specific CD8+ T cellresponse remains obscure. It could resultfrom a higher EBV viral load. Alternatively,it could be due to an intrinsicallydeficient EBV-specificCTL response, cytotoxic granulesmediated.Thus, we performed anin-depth study of the phenotype of exvivo EBV- and CMV-specific CD8+T cells in MS patients and control patients,assessing their cytotoxic activity.Methods:We analyzed the profileof cytotoxic granules in EBV- andCMV-specific CD8+ T cells in a cohortof 13 early MS patients, 20 lateMS, 30 other neurological diseases(OND) patients and 7 healthy controlsubjects. Ex vivo analysis of EBV- orCMV-specific CD8+ T cells was performedusing HLA class I/tetramercomplexes coupled to CCR7 andCD57 markers in conjunction withperforin, granzymes A, BandKstaining.In a sub-cohort of MS patientsand controls, cytotoxic activity ofEBV- and CMV-specific CD8+ Tcells was investigated using a functionalCFSE CTL assay. Results: UsingHLA Class I tetramers for EBVand CMV, we found that the frequencyof EBV- or CMV-specificCD8+ T cells were similar in all studysubjects. Most of EBV- and CMVspecificCD8+Tcells were highly differentiated(CCR7-) and a variousproportion expressed the exhaustionmarker CD57. MS and OND patientshad increased perforin expression inEBV-specific CD8+ T cells. Most importantly,we found that MS patientswith longer disease duration tended tohave lower CTL cytotoxicity as comparedto earlyMSpatients or controls.Conclusions: Effector EBV-specificCD8+ T cells are increased in earlyMS, however their cytotoxic granuleprofile does not seem to be fully alteredand the cytotoxic activity ofthese cells is normal. However, thecytotoxic activity of CTL decreasedin late MS patients suggesting an exhaustionof EBV-specific CD8+ Tcells possibly due to EBV reactivation.This work was supported by theSwiss National Foundation PP00B3-124893, the Swiss Society for MS,and the Biaggi Foundation to RADP.
Resumo:
Management of chronic pain is a real challenge, and current treatments focusing on blocking neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells has been widely implicated in neuroinflammation in the central nervous system, leading to neruodegeneration in many disease conditions such as Alzheimer's and multiple sclerosis. The inflammatory mediators released by activated glial cells, such as tumor necrosis factor-α and interleukin-1β can not only cause neurodegeneration in these disease conditions, but also cause abnormal pain by acting on spinal cord dorsal horn neurons in injury conditions. Pain can also be potentiated by growth factors such as BDNF and bFGF that are produced by glia to protect neurons. Thus, glia cells can powerfully control pain when they are activated to produce various pain mediators. We will review accumulating evidence supporting an important role of microglia cells in the spinal cord for pain control under injury conditions (e.g. nerve injury). We will also discuss possible signaling mechanisms in particular MAP kinase pathways that are critical for glia control of pain. Investigating signaling mechanisms in microglia may lead to more effective management of devastating chronic pain.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.
Resumo:
In 2011, new oral anticoagulants for atrial fibrillation are available and the ABCD3-I score predicting stroke after TIA updates the ABCD2 score. New McDonald criteria allow faster MS diagnosis and the first oral treatment (fingolimod) for MS can be prescribed. A new anti-antiepileptic drug (retigabine) is available and sodium valproate has long term neurological adverse effects after in utero exposure. Among Parkinson disease treatments, deep brain stimulation is extending applications and dopamine agonists with extended release are as efficient and well tolerated as standard forms at long term scale. Monoclonal antibodies and immunosuppressant agents are proposed as good alternatives in the treatment of chronic dysimmune polyneuropathies. Gene therapy for the treatment of genetic myopathies is progressing.
Resumo:
Mice lacking in CD8 were generated from homologous recombination in embryonal stem cells at the CD8 locus and bred with the experimental allergic encephalomyelitis (EAE)-susceptible PL/JH-2u through four backcross generations to investigate the role of CD8+ T cells in this model of multiple sclerosis. The disease onset and susceptibility were similar to those of wild-type mice. However, the mutant mice had a milder acute EAE, reflected by fewer deaths, but more chronic EAE, reflected by a higher frequency of relapse. This suggests that CD8+ T lymphocytes may participate as both effectors and regulators in this animal model.
Resumo:
A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.
Resumo:
Purpose: To identify patterns of initially pain freedom response in patients with classical trigeminal neuralgia (CTN) with Gamma Knife surgery (GKS) and to compare their associated hypoesthesia and recurrence rates. Methods: In this study we analysed only 497 patients treated between July 1992 and November 2010, with a follow-up longer than 1 year, after excluding megadolichobasilar artery and multiple sclerosis related trigeminal neuralgia, as well as the second GKS treatments so as to have only cases with CTN and single radiosurgical treatment. GKS using a Gamma Knife (model B or C or Perfexion) was performed, based on both MRI and computer tomography (CT) targeting. A single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.8 mm (range 4.5-14) anteriorly to the emergence of the nerve. A median maximum dose of 85 Gy (range 70-90) was delivered. After empiric methods but also by using a chart with clear cut-off periods of pain free distribution, we were able to divide the initially pain free patients into 3 separate groups: within the first 48 hours, after 48 hours till 30 days and after 30 days, respectively. Results: The median follow- up period was 43.75 months (range 12-174.41). Four hundred and fifty-four patients (91.75%) were initially pain free in a median time of 10 days (range 1-459): 169 (37.2%) became pain free within the first 48 hours (pf<=48 h), compared to 194 (42.8%) between the 3-rd day and the day 30 (pf (>48 h, <=30 d)), inclusively and 91 (20%) patients after 30 days (pf>30d). Differences in terms of postoperative hypoesthesia were found with a p value of 0.014 as follows: the group pf<=48 h had 18 (13.7%) compared to pf (>48 h, <=30 d) with 30 (19%) and pf>30d with 22 (30.5%) patients developing a postoperative GKS hypoesthesia. One hundred and fifty seven (34.4%) patients initially pain free experienced a recurrence with a median delay of 24 months (range 0.62-150.06). There were no statistically significant differences between the three groups concerning recurrence (p value of 0.515). Conclusions: An important number of patients (169 cases, 37.2%) became pain free in the first 48 hours. Hypoesthesia rate was higher within the group becoming pain free after 30 days with a statistically significant difference between the three populations (p= 0.014). Further analysis will eventually help to elucidate the differences observed among groups.
Resumo:
To link the presence of intrathecal virus-specific oligoclonal immunoglobulin G (IgG) in multiple sclerosis patients to a demyelinating activity, aggregating rat brain cell cultures were treated with antibodies directed against two viruses, namely, rubella (RV) and hepatitis B (HB). Anti-RV antibodies in the presence of complement decreased myelin basic protein concentrations in a dose-dependent manner, whereas anti-HB antibodies had no effect. A similar but less pronounced effect was observed on the enzymatic activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase, which is enriched in noncompact membranes of oligodendrocytes. These effects were comparable to those in cultures treated with antibodies directed against myelin oligodendrocyte glycoprotein (MOG), previously found to be myelinotoxic both in vitro and in vivo. Sequence homologies were found between structural glycoprotein E(2) of RV and MOG, suggesting that demyelination was due to molecular mimicry. To support the hypothesis that demyelination was caused by anti-RV IgG that recognized an MOG epitope, we found that anti-RV antibodies depleted MOG in a dose-dependent manner. Further evidence came from the demonstration that anti-RV and anti-MOG IgG colocalized on oligodendrocyte processes and that both revealed by Western blot a 28 kDa protein in CNS myelin, a molecular weight corresponding to MOG. These findings suggest that a virus such as RV exhibiting molecular mimicry with MOG can trigger an autoimmune demyelination.