143 resultados para multinucleon transfer reaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connexin36 (Cx36) is specifically expressed in neurons and in pancreatic beta-cells. Cx36 functions as a critical regulator of insulin secretion and content in beta-cells. In order to identify the molecular mechanisms that control the beta-cell expression of Cx36, we initiated the characterization of the human 5' regulatory region of the CX36 gene. A 2043-bp fragment of the human CX36 promoter was identified from a human BAC library and fused to a luciferase reporter gene. This promoter region was sufficient to confer specific expression to the reporter gene in insulin-secreting cell lines. Within this 5' regulatory region, a putative neuron-restrictive silencer element conserved between rodent and human species was recognized and binds the neuron-restrictive silencing factor (NRSF/REST). This factor is not expressed in insulin-secreting cells and neurons; it functions as a potent repressor through the recruitment of histone deacetylase to the promoter of neuronal genes. The NRSF-mediated repression of Cx36 in HeLa cells was abolished by trichostatin A, confirming the functional importance of histone deacetylase activity. Ectopic expression, by viral gene transfer, of NRSF/REST in different insulin-secreting beta-cell lines induced a marked reduction in Cx36 mRNA and protein content. Moreover, mutations in the Cx36 neuron-restrictive silencer element relieved the low transcriptional activity of the human CX36 promoter observed in HeLa cells and in INS-1 cells expressing NRSF/REST. The data showed that cx36 gene expression in insulin-producing beta-cell lines is strictly controlled by the transcriptional repressor NRSF/REST indicating that Cx36 participates to the neuronal phenotype of the pancreatic beta-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF). A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3, and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1) were expected, whereas others (in a gene cluster for phenylacetate degradation) were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in parallel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many applications in population genetics, codominant simple sequence repeats (SSRs) may have substantial advantages over dominant anonymous markers such as amplified fragment length polymorphisms (AFLPs). In high polyploids, however, allele dosage of SSRs cannot easily be determined and alleles are not easily attributable to potentially diploidized loci. Here, we argue that SSRs may nonetheless be better than AFLPs for polyploid taxa if they are analyzed as effectively dominant markers because they are more reliable and more precise. We describe the transfer of SSRs developed for diploid Mercurialis huetii to the clonal dioecious M. perennis. Primers were tested on a set of 54 male and female plants from natural decaploid populations. Eight of 65 tested loci produced polymorphic fragments. Binary profiles from 4 different scoring routines were used to define multilocus lineages (MLLs). Allowing for fragment differences within 1 MLL, all analyses revealed the same 14 MLLs without conflicting with merigenet, sex, or plot assignment. For semiautomatic scoring, a combination of as few as 2 of the 4 most polymorphic loci resulted in unambiguous discrimination of clones. Our study demonstrates that microsatellite fingerprinting of polyploid plants is a cost efficient and reliable alternative to AFLPs, not least because fewer loci are required than for diploids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus est un pathogène humain majeur ayant développé des résistances contre la quasi totalité des antibiotiques disponibles, incluant la très importante famille des β- lactamines. La résistance à cette classe d'antibiotiques est conférée par la « Staphylococcal Cassette Chromosome mec » (SCCmec), qui est un élément génétique mobile capable de s'insérer dans le chromosome bactérien et capable d'être transféré horizontalement chez d'autres staphylocoques. Le mécanisme moléculaire impliqué dans ce transfert horizontal demeure largement inconnu. L'une des premières étapes du transfert est l'excision du SCC mec du chromosome bactérien. Cette excision est promue par des enzymes codées par l'élément SCCmec lui- même et appelées de ce fait « Cassette Chromosome Recombinases » (Ccr). L'un des buts de ce travail de thèse a été de comprendre la régulation de l'expression des gènes codant pour les Ccr recombinases. En utilisant des outils moléculaires originaux, nous avons été en mesure de démontrer en premier lieu que les Ccr recombinases étaient exprimées de façon « bistable », c'est à dire qu'uniquement quelques pourcents de cellules dans une population exprimaient ces gènes à un temps donné. Dans un deuxième temps, nous avons également démontré que l'expression de ces gènes était régulée par des facteurs étrangers au SCC mec. L'expression bistable des recombinases est un concept important. Effectivement, cela permet à la majorité des cellules d'une population de conserver l'élément SCC mec, alors que seulement une petite fraction le perd afin de le rendre disponible pour un transfert. Ainsi, alors que l'élément SCC mec continue de se propager avec la multiplication des bactéries Staphylococcus aureus résistant à la méticilline (SARM), il peut être simultanément transmis à des souches susceptibles (Staphylococcus aureus susceptible à la méticilline, SASM), entraînant l'apparition de nouveaux SARM. De façon très intéressante, le fait que cette bistabilité est contrôlée par les bactéries, et non le SCCmec lui-même, montre que la décision de transférer ou non la cassette SCC mec appartient à la bactérie. En conséquence, il doit exister dans la nature des souches qui sont plus ou moins aptes à effectuer ce transfert. En nous appuyant sur ces observations, nous avons montré que l'excision du SCC mec était effectivement régulée de façon très étroite au cours de la division cellulaire, et ne se passait que pendant un temps limité au début de la croissance. Ce résultat est compatible avec une régulation génétique commandée par la densité cellulaire, qui pourrait être dépendante de la production de signaux extracellulaires, du type que l'on rencontre dans le quorum sensing. Les signaux hypothétiques entraînant l'excision du SCC mec restent inconnus à l'heure actuelle. La connaissance de ces signaux pourrait se révéler très importante afin de développer des stratégies pour interférer avec la dissémination de la résistance au β-lactamines. Deux sujets additionnels ont été logiquement investigués au vu de ces premiers résultats. Premièrement, si certaines souches de SARM sont plus ou moins aptes à déclencher l'excision du SCC mec, de même certaines souches de SASM devraient être plus ou moins aptes à acquérir cet élément. Deuxièmement, afin d'étudier ces mécanismes de transfert au niveau épidémiologique, il nous a été nécessaire de développer des outils nous permettant d'explorer le phénomène à une plus large échelle. Concernant le premier point, il a été postulé que certains SASM seraient réfractaires à l'intégration génomique d'un SCC mec en raison de polymorphismes particuliers à proximité du site d'insertion chromosomique (attB). En étudiant plus de 40 isolais de S. aureus, provenant de porteurs sains, nous avons confirmé ce polymorphisme dans l'environnement à'attB. De plus, nous avons pu montrer que ces régions polymorphiques ont évolué parallèlement à des groupes phylogénétiques bien connus. Ainsi, si des telles régions réfractaires à l'intégration de SCC mec existent, celles-ci devraient ségréger dans des complexes clonaux bien définis qui devraient être facilement identifiables au niveau épidémiologique. Concernant le second point, nous avons été capables de construire un système rapporteur de l'excision du SCCmec, en utilisant un plasmide à faible copie. Ce système consistait en un promoteur fort et un gène codant pour une protéine verte fluorescente (GFP) sous le contrôle d'un promoteur fort séparés à l'aide d'un élément SCC artificiel portant trois terminateurs de transcription. Ainsi, la fluorescence ne s'exprime que si l'élément SCC est excisé du plasmide. Ce système a été testé avec succès dans plusieurs types de staphylocoques, et est actuellement évalué dans d'autres souches et conditions stimulant ou inhibant l'excision. De manière générale, cette dissertation représente parcours scientifique à travers plusieurs aspects d'un problème de santé publique majeur en rapport avec la résistance bactérienne aux antibiotiques. Ce travail s'attaque à des problèmes fondamentaux concernant le transfert horizontal de l'élément SCC mec. De plus, il s'intéresse à des aspects plus généraux de cet élément génétique mobile qui pourraient se révéler très importants en terme de mouvement de gènes au sein des staphylocoques, voir d'autres bactéries gram-positives. Finalement ce travail de thèse met en place le fondamentaux requis pour des recherches futures visant à interférer avec le transfert horizontal de la résistance aux β-lactamines. - Staphylococcus aureus is a major human pathogen. Moreover, S. aureus have developed resistance to almost all available antibiotics, including the important family of β-lactam molecules. Intrinsic resistance to β-lactams is conferred by the Staphylococcal Cassette Chromosome mec (SCCmec), which is a mobile genomic island that inserts into the staphylococcal chromosome and can be horizontally transferred into other staphylococci. However, little is known about the molecular mechanisms involved in this horizontal transfer into naïve strains. One of the first steps in SCC mec horizontal transfer is its excision from the chromosome. Excision is mediated by recombinase enzymes that are encoded by SCC mec itself, and named accordingly Ccr recombinases - for Cassette Chromosome recombinases. One goal of this thesis was to understand the regulation these recombinase genes. By using original molecular tools we could demonstrate first that the Ccr recombinases were expressed in a "bistable" manner, i.e. in only few percentages of the bacterial cells at a given time, and second that they were regulated by determinants that were not encoded on the SCC mec element, but elsewhere on the staphylococcal genome. "Bistable" expression Ccr recombinases is an important concept. It allows SCC mec to be excised and thus available for horizontal transfer, while ensuring that only some cells, but not the whole population, loose their valuable SCC mec genes. Thus, while the SCC mec element expands with the multiplication of the MRSA colony, it can simultaneously be transmitted into methicillin-susceptible S. aureus (MSSA), which convert into new MRSA. Most interestingly, the fact that bistability was regulated by the cells, rather than by SCC mec, indicates that it was the choice of the bacteria to trigger or not SCC mec transfer. As a consequence, there must be, in nature, staphylococcal strains that are more or less prone to sustain SCC mec transfer. Following these seminal observations we found that excision was indeed tightly regulated during bacterial division, and occurred only during a limited period of time at the beginning of bacterial growth. This is compatible with cell-density mediated gene regulation, and may depend on the production of extracellular signal molecules that transmit appropriate orders to neighboring cells, such as in quorum sensing. The potential signal triggering SCCmec excision is as yet unknown. However, it could be critical in promoting the horizontal transfer of methicillin resistance, or for the possible development of means to interfere with it. Two additional hypothesis were logically investigated in the view of these first results. First, if some strains of MRSA might be more prone than others to promote SCC mec excision, then some strains of MS SA might be more or less prone to acquire the element as well. Second, to investigate these multiple mechanisms at an epidemiological level, one would need to develop tools amenable to explore S. aureus strains at a larger scale. Regarding the first issue, it was postulated by others that some MSSA might be refractory to SCC mec integration because they had peculiar DNA polymorphisms in the vicinity of the site-specific chromosomal entry point {attB) of SCC mec. By studying >40 S. aureus isolates from healthy carriers, we confirmed the polymorphism of the attB environment. Moreover, we could show that these polymorphic regions co-evolved with well-known phylogenic clonal clusters. Therefore, if SCCwec-refractory attB environments exist, then they would segregate in well- defined S. aureus clonal clusters that would be easy to identify at the epidemiological level. Regarding the second issue, we were able to construct a new excision reporter system in a low copy number S. aureus plasmid. The reporter system consists in a strong promoter driving a green fluorescent protein {gfp) gene, separated by an artificial SCC-like element carrying three transcriptional terminators. Thus, fluorescence is not expressed unless the SCC-like element is excised. The system has been successfully tested in several aureus and non- aureus staphylococci, and is now being applied to more strains and various excision- triggering or inhibiting conditions. Altogether the dissertation is a scientific journey through various aspects of a salient medical problem with regard to antibiotic resistance and public health threat. The research work tackles fundamental issues about the mechanisms of horizontal transfer of the SCC mec element. Moreover, it also addresses more general features of this mobile element, which could be of larger importance with regard to gene trafficking in staphylococci, and maybe other gram-positive bacteria. Finally, the dissertation sets the fundamentals for future work and possible new ways to interfere with the horizontal transfer of methicillin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by oculocutaneous albinism, bleeding tendency and susceptibility to pulmonary fibrosis. No curative therapy is available. Genetic correction directed to the lungs, bone marrow and/or gastro-intestinal tract might provide alternative forms of treatment for the diseases multi-systemic complications. We demonstrate that lentiviral-mediated gene transfer corrects the expression and function of the HPS1 gene in patient dermal melanocytes, which opens the way to development of gene therapy for HPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organization of lin genes and IS6100 was studied in three strains of Sphingomonas paucimobilis (B90A, Sp+, and UT26) which degraded hexachlorocyclohexane (HCH) isomers but which had been isolated at different geographical locations. DNA-DNA hybridization data revealed that most of the lin genes in these strains were associated with IS6100, an insertion sequence classified in the IS6 family and initially found in Mycobacterium fortuitum. Eleven, six, and five copies of IS6100 were detected in B90A, Sp+, and UT26, respectively. IS6100 elements in B90A were sequenced from five, one, and one regions of the genomes of B90A, Sp+, and UT26, respectively, and were found to be identical. DNA-DNA hybridization and DNA sequencing of cosmid clones also revealed that S. paucimobilis B90A contains three and two copies of linX and linA, respectively, compared to only one copy of these genes in strains Sp+ and UT26. Although the copy number and the sequence of the remaining genes of the HCH degradative pathway (linB, linC, linD, and linE) were nearly the same in all strains, there were striking differences in the organization of the linA genes as a result of replacement of portions of DNA sequences by IS6100, which gave them a strange mosaic configuration. Spontaneous deletion of linD and linE from B90A and of linA from Sp+ occurred and was associated either with deletion of a copy of IS6100 or changes in IS6100 profiles. The evidence gathered in this study, coupled with the observation that the G+C contents of the linA genes are lower than that of the remaining DNA sequence of S. paucimobilis, strongly suggests that all these strains acquired the linA gene through horizontal gene transfer mediated by IS6100. The association of IS6100 with the rest of the lin genes further suggests that IS6100 played a role in shaping the current lin gene organization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Nonspecific inflammatory reactions characterized by local tenderness, fever, and flu-like discomfort have been seen in patients undergoing endoluminal graft placement in the abdominal aorta or the femoral arteries. We undertook a study to assess the clinical and laboratory parameters of this inflammation. METHODS: Ten patients with femoropopliteal artery (n = 9) or aortic (n = 1) lesions were treated with EndoPro System 1 stent-grafts made of nitinol alloy and covered with a polyester (Dacron) fabric. Eleven patients implanted with a bare nitinol stent served as the control group. RESULTS: In the stent-graft group, four patients showed clinical signs of acute inflammation manifested by fever and local tenderness. Three of these patients suffered thrombosis of the stent-grafts during the first month of follow-up. Plasma levels of interleukin-1 beta and interleukin-6 in all stent-graft patients were markedly increased 1 day after intervention (7.3 +/- 2.8 versus 90.2 +/- 34.1 pg/mL and 15.6 +/- 5.8 versus 175.5 +/- 66.3 pg/mL, respectively; p < 0.01). This was followed by an increase in fibrinogen (3.0 +/- 0.2 versus 5.0 +/- 0.2 g/L; p < 0.05) and C-reactive protein (14.6 +/- 3.3 versus 77.5 +/- 15.0 mg/L; p < 0.01) at 1 week. No direct correlation between the inflammatory markers and symptoms could be found. In vitro analysis showed that individual components of the stent-graft did not activate human neutrophils, whereas the intact stent-graft itself induced a marked neutrophil activation. CONCLUSIONS: The component of the self-expanding stent-graft responsible for the nonspecific inflammatory reaction was not identified in this study. It is likely that the stent-graft itself or some as yet unrecognized element of the device other than the Dacron fabric or metal alloy may be a potent in vivo inducer of cytokine reaction by neutrophils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington's disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenovirus-mediated gene therapy is hampered by severe virus-related toxicity, especially to the liver. The aim of the present study was to test the ability of a vascular exclusion technique to achieve transgene expression within selected liver segments, thus minimizing both viral and transgene product toxicity to the liver. An E1-E3-deleted replication-deficient adenovirus expressing a green fluorescent protein (GFP) reporter gene was injected into the portal vein of BDIX rats, with simultaneous clamping of the portal vein tributaries to liver segments II, III, IV, V, and VIII. GFP expression and inflammatory infiltrate were measured in the different segments of the liver and compared with those of the livers of animals receiving the viral vector in the portal vein without clamping. The GFP expression was significantly higher in the selectively perfused segments of the liver as compared with the non-perfused segments (p < 0.0001) and with the livers of animals that received the vector in the portal vein without clamping (p < 0.0001). Accordingly, the inflammatory infiltrate was more intense in the selectively perfused liver segments as compared with all other groups (p < 0.0001). Fluorescence was absent in lungs and kidneys and minimal in spleen. The clinical usefulness of adenovirus-mediated gene transfer to the liver largely depends on the reduction of its liver toxicity. Clamping of selected portal vein branches during injection allows for delivery of genes of interest to targeted liver segments. Transgene expression confined to selected liver segments may be useful in the treatment of focal liver diseases, including metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In sporadic Tauopathies, neurofibrillary degeneration (NFD) is characterised by the intraneuronal aggregation of wild-type Tau proteins. In the human brain, the hierarchical pathways of this neurodegeneration have been well established in Alzheimer's disease (AD) and other sporadic tauopathies such as argyrophilic grain disorder and progressive supranuclear palsy but the molecular and cellular mechanisms supporting this progression are yet not known. These pathways appear to be associated with the intercellular transmission of pathology, as recently suggested in Tau transgenic mice. However, these conclusions remain ill-defined due to a lack of toxicity data and difficulties associated with the use of mutant Tau. RESULTS: Using a lentiviral-mediated rat model of hippocampal NFD, we demonstrated that wild-type human Tau protein is axonally transferred from ventral hippocampus neurons to connected secondary neurons even at distant brain areas such as olfactory and limbic systems indicating a trans-synaptic protein transfer. Using different immunological tools to follow phospho-Tau species, it was clear that Tau pathology generated using mutated Tau remains near the IS whereas it spreads much further using the wild-type one. CONCLUSION: Taken together, these results support a novel mechanism for Tau protein transfer compared to previous reports based on transgenic models with mutant cDNA. It also demonstrates that mutant Tau proteins are not suitable for the development of experimental models helpful to validate therapeutic intervention interfering with Tau spreading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. RESULTS: The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. CONCLUSION: Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.