112 resultados para multimodal message
Resumo:
The musicians are seen in daily neurological practice facing various problems sometimes simple such as skeletal or tendon pain or even compression of a nerve trunk and sometimes more complicated such as focal dystonia. Dystonia often has a dramatic impact on the career of a musician given the complexity of the clinical and therapeutic approach and the results are often disappointing. The history of the German Romantic composer Robert Schumann illustrates this reality; through his story a discussion of both the different pathophysiological hypotheses responsible for focal dystonia, a disorder of brain plasticity, and of the multimodal therapeutic approaches, revisited in the light of neurophysiological findings will be described.
Resumo:
Cell-free translation of total RNA isolated from vaccinia virus-infected cells late in infection results in a complex mixture of polypeptides. A monospecific antibody directed against one of the major structural proteins of the virus particle immunoprecipitated a single polypeptide with a molecular weight of 11,000 (11K) from this mixture. Immunoprecipitation was therefore used to identify the structural polypeptide among the in vitro translation products of RNA purified by hybridization selection to restriction fragments of the vaccinia virus genome. This allowed us to map the mRNA coding for the 11K polypeptide to the extreme left-hand end of the HindIII E fragment. Detailed transcriptional mapping of this region of the genome by nuclease S1 analysis revealed the presence of a late RNA transcribed from the rightward-reading strand. Its 5' end mapped at ca. 130 base pairs to the left of the HindIII site at the junction between the HindIII F and E fragments. The map position of this RNA coincided precisely with the map position of the late message coding for the 11K polypeptide.
Resumo:
The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.
Resumo:
The prognosis of patients who are admitted in a comatose state following successful resuscitation after cardiac arrest remains uncertain. Although the introduction of therapeutic hypothermia (TH) and improvements in post-resuscitation care have significantly increased the number of patients who are discharged home with minimal brain damage, short-term assessment of neurological outcome remains a challenge. The need for early and accurate prognostic predictors is crucial, especially since sedation and TH may alter the neurological examination and delay the recovery of motor response for several days. The development of additional tools, including electrophysiological examinations (electroencephalography and somatosensory evoked potentials), neuroimaging and chemical biomarkers, may help to evaluate the extent of brain injury in these patients. Given the extensive literature existing on this topic and the confounding effects of TH on the strength of these tools in outcome prognostication after cardiac arrest, the aim of this narrative review is to provide a practical approach to post-anoxic brain injury when TH is used. We also discuss when and how these tools could be combined with the neurological examination in a multimodal approach to improve outcome prediction in this population.
Resumo:
The transpressional boundary between the Australian and Pacific plates in the central South Island of New Zealand comprises the Alpine Fault and a broad region of distributed strain concentrated in the Southern Alps but encompassing regions further to the east, including the northwest Canterbury Plains. Low to moderate levels of seismicity (e. g., 2 > M 5 events since 1974 and 2 > M 4.0 in 2009) and Holocene sediments offset or disrupted along rare exposed active fault segments are evidence for ongoing tectonism in the northwest plains, the surface topography of which is remarkably flat and even. Because the geology underlying the late Quaternary alluvial fan deposits that carpet most of the plains is not established, the detailed tectonic evolution of this region and the potential for larger earthquakes is only poorly understood. To address these issues, we have processed and interpreted high-resolution (2.5 m subsurface sampling interval) seismic data acquired along lines strategically located relative to extensive rock exposures to the north, west, and southwest and rare exposures to the east. Geological information provided by these rock exposures offer important constraints on the interpretation of the seismic data. The processed seismic reflection sections image a variably thick layer of generally undisturbed younger (i.e., < 24 ka) Quaternary alluvial sediments unconformably overlying an older (> 59 ka) Quaternary sedimentary sequence that shows evidence of moderate faulting and folding during and subsequent to deposition. These Quaternary units are in unconformable contact with Late Cretaceous-Tertiary interbedded sedimentary and volcanic rocks that are highly faulted, folded, and tilted. The lowest imaged unit is largely reflection-free Permian Triassic basement rocks. Quaternary-age deformation has affected all the rocks underlying the younger alluvial sediments, and there is evidence for ongoing deformation. Eight primary and numerous secondary faults as well as a major anticlinal fold are revealed on the seismic sections. Folded sedimentary and volcanic units are observed in the hanging walls and footwalls of most faults. Five of the primary faults represent plausible extensions of mapped faults, three of which are active. The major anticlinal fold is the probable continuation of known active structure. A magnitude 7.1 earthquake occurred on 4 September 2010 near the southeastern edge of our study area. This predominantly right-lateral strike-slip event and numerous aftershocks (ten with magnitudes >= 5 within one week of the main event) highlight the primary message of our paper: that the generally flat and topographically featureless Canterbury Plains is underlain by a network of active faults that have the potential to generate significant earthquakes.
Resumo:
Drawing on Social Representations Theory, this study investigates focalisation and anchoring during the diffusion of information concerning the Large Hadron Collider (LHC), the particle accelerator at the European Organisation for Nuclear Research (CERN). We hypothesised that people focus on striking elements of the message, abandoning others, that the nature of the initial information affects diffusion of information, and that information is anchored in prior attitudes toward CERN and science. A serial reproduction experiment with two generations and four chains of reproduction diffusing controversial versus descriptive information about the LHC shows a reduction of information through generations, the persistence of terminology regarding the controversy and a decrease of other elements for participants exposed to polemical information. Concerning anchoring, positive attitudes toward CERN and science increase the use of expert terminology unrelated to the controversy. This research highlights the relevance of a social representational approach in the public understanding of science.
Resumo:
PURPOSE OF REVIEW: To present the practical aspects of transcranial Doppler (TCD) and provide evidence supporting its use for the management of traumatic brain injury (TBI) patients. RECENT FINDINGS: TCD measures systolic, mean, and diastolic cerebral blood flow (CBF) velocities and calculates the pulsatility index from basal intracranial arteries. These variables reflect the brain circulation, provided there is control of potential confounding factors. TCD can be useful in patients with severe TBI to detect low CBF, for example, during intracranial hypertension, and to assess cerebral autoregulation. In the emergency room, TCD might complement brain computed tomography (CT) scan and clinical examination to screen patients at risk for further neurological deterioration after mild-to-moderate TBI. SUMMARY: The diagnostic value of TCD should be incorporated into other findings from multimodal brain monitoring and CT scan to optimize the bedside management of patients with TBI and help guide the choice of appropriate therapies.
Resumo:
BACKGROUND: This review aims to present a consensus for optimal perioperative care in colonic surgery and to provide graded recommendations for items for an evidenced-based enhanced perioperative protocol. METHODS: Studies were selected with particular attention paid to meta-analyses, randomised controlled trials and large prospective cohorts. For each item of the perioperative treatment pathway, available English-language literature was examined, reviewed and graded. A consensus recommendation was reached after critical appraisal of the literature by the group. RESULTS: For most of the protocol items, recommendations are based on good-quality trials or meta-analyses of good-quality trials (quality of evidence and recommendations according to the GRADE system). CONCLUSIONS: Based on the evidence available for each item of the multimodal perioperative care pathway, the Enhanced Recovery After Surgery (ERAS) Society, International Association for Surgical Metabolism and Nutrition (IASMEN) and European Society for Clinical Nutrition and Metabolism (ESPEN) present a comprehensive evidence-based consensus review of perioperative care for colonic surgery.
Resumo:
We have analyzed the expression of T cell receptor (TcR) genes in the thymus using in situ RNA hybridizations with probes to the constant regions of the TcR alpha, beta, gamma and delta chains. Localization of transcripts revealed low TcR alpha mRNA levels in the thymus cortex and very low levels in the subcapsular region. In contrast, TcR beta message was very abundant in the cortex. TcR gamma or delta mRNA+ thymocytes showed a scattered, predominantly cortical localization. In contrast to gamma, TcR delta transcripts were abundant in the subcapsular region. Control experiments with sorted TcR alpha/beta or gamma/delta cells revealed a detection efficiency of 75%-85% for the respective TcR mRNA and data on TcR gene expression in mature, CD3+ thymocytes were consistent with previous reports. The analysis of immature, CD3- thymocyte subsets, however, revealed a virtual absence of TcR alpha transcripts and an unexpectedly high proportion of cells (14%-29%) expressing the gene for the TcR delta chain. The data are discussed in view of current models of lineage relationships in the thymus.
Resumo:
Introduction: Different routes of postoperative analgesia may be used after cesarean section: systemic, spinal or epidural [1]. Although the efficacy of these alternative analgesic regimen has already been studied [2, 3], very few studies have compared patients' satisfaction between them. Methodology: After ethical committee acceptation, 100 ASA 1 patients scheduled for an elective cesarean section were randomized in 4 groups. After a standardized spinal anesthesia (hyperbaric bupivacaine 10 mg and fentanyl 20 μg), each group had a different postoperative analgesic regimen: - Group 1: oral paracetamol 4x1 g/24 h, oral ibuprofene 3x600 mg/24 h and subcutaneous morphine on need (0.1 mg/kg 6x/24 h) - Group 2: intrathecal morphine (100 μg) and then same as Group 1 - Group 3: oral paracetamol 4x1 g/24 h, oral ibuprofene 3x600 mg/24 h and PCEA with fentanyl 5 μg/ml epidural solution - Group 4: oral paracetamol 4x1g/24 h, oral ibuprofene 3x600 mg/ 24 h and PCEA with bupivacaine 0.1% and fentanyl 2 μg/ml epidural solution After 48 hours, a specific satisfaction questionnaire was given to all patients which permitted to obtain 2 different scores concerning postoperative analgesia: a global satisfaction score (0-10) and a detailed satisfaction score (5 questions scored 0-10 with a summative score of 0-50). Both scores, expressed as mean ± SD, were compared between the 4 groups with a Kruskall-Wallis test and between each group with a Mann-Whitney test. A P-value <0.05 was considered significant. Results: Satisfaction scores Gr. 1 (n = 25) Gr. 2 (n = 25) Gr. 3 (n = 25) Gr. 4 (n = 25) P-value global (0-10) 8.2 ± 1.2 9.0 ± 1.0 7.8 ± 2.1 6.5 ± 2.5 0.0006 detailed (0-50) 40 ± 6 43 ± 5 38 ± 6 34 ± 8 0.0002 Conclusion: Satisfaction scores were significantly better in patients who received a systemic postoperative analgesia only (Groups 1 and 2) compared to patients who received systemic and epidural postoperative analgesia (Groups 3 and 4). The best scores were achieved with the combination of intrathecal morphine and multimodal systemic analgesia (Group 2) which allowed early ambulation without significant pain. Patients treated with postoperative epidural analgesia with combined local anesthetics and opioids (Group 4) obtained the worse scores (more restrictive nursing with less mobility, frequent asymmetrical block with insufficient analgesia on one side and motor block on the other)
Resumo:
This paper presents 3-D brain tissue classificationschemes using three recent promising energy minimizationmethods for Markov random fields: graph cuts, loopybelief propagation and tree-reweighted message passing.The classification is performed using the well knownfinite Gaussian mixture Markov Random Field model.Results from the above methods are compared with widelyused iterative conditional modes algorithm. Theevaluation is performed on a dataset containing simulatedT1-weighted MR brain volumes with varying noise andintensity non-uniformities. The comparisons are performedin terms of energies as well as based on ground truthsegmentations, using various quantitative metrics.
Resumo:
We report the case of a 37-year-old man suffering from insidious visual agnosia and spastic paraparesis due to a PSEN1 mutation. His mother was diagnosed with Alzheimer disease after a biopsy. He was assessed by multimodal neuroimaging, including new in vivo positron emission tomography amyloid imaging (F-AV45). His data were compared with those from healthy participants and patients with sporadic predemential Alzheimer disease. He exhibited posterior cortical thickness reduction, posterior hypometabolism, and increased amyloid ligand uptake in the posterior cortex and the striatum. We show that F-AV45 positron emission tomography allows visualization of the unusual pattern of amyloid deposits that co-localize with cortical atrophy in this genetic form of Alzheimer disease.
Resumo:
BACKGROUND: Multimodality treatment suites for patients with cerebral arteriovenous malformations (AVM) have recently become available. This study was designed to evaluate feasibility, safety and impact on treatment of a new intraoperative flat-panel (FP) based integrated surgical and imaging suite for combined endovascular and surgical treatment of cerebral AVM. METHODS: Twenty-five patients with AVMs to treat with combined endovascular and surgical interventions were prospectively enrolled in this consecutive case series. The hybrid suite allows combined endovascular and surgical approaches with intraoperative scanner-like imaging (XperCT®) and intraoperative 3D rotational angiography (3D-RA). The impact of intraoperative multimodal imaging on feasibility, workflow of combined interventions, surgery, and unexpected imaging findings were analyzed. RESULTS: Twenty-five patients (mean age 38 ± 18.6 year) with a median Spetzler-Martin grade 2 AVM (range 1-4) underwent combined endovascular and surgical procedures. Sixteen patients presented with a ruptured AVM and nine with an unruptured AVM. In 16 % (n = 4) of cases, intraoperative imaging visualized AVM remnants ≤3 mm and allowed for completion of the resections in the same sessions. Complete resection was confirmed in all n = 16 patients who had follow-up angiography one year after surgery so far. All diagnostic and therapeutical steps, including angiographic control, were performed without having to move the patients CONCLUSION: The hybrid neurointerventional suite was shown to be a safe and useful setup which allowed for unconstrained combined microsurgical and neuroradiological workflow. It reduces the need for extraoperative angiographic controls and subsequent potential surgical revisions a second time, as small AVM remnants can be detected with high security.
Resumo:
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.