98 resultados para marsh plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant health and fitness widely depend on interactions with soil microorganisms. Some bacteria such as pseudomonads can inhibit pathogens by producing antibiotics, and controlling these bacteria could help improve plant fitness. In the present study, we tested whether plants induce changes in the antifungal activity of root-associated bacteria as a response to root pathogens. We grew barley plants in a split-root system with one side of the root system challenged by the pathogen Pythium ultimum and the other side inoculated with the biocontrol strain Pseudomonas fluorescens CHA0. We used reporter genes to follow the expression of ribosomal RNA indicative of the metabolic state and of the gene phlA, required for production of 2,4-diacetylphloroglucinol, a key component of antifungal activity. Infection increased the expression of the antifungal gene phlA. No contact with the pathogen was required, indicating that barley influenced gene expression by the bacteria in a systemic way. This effect relied on increased exudation of diffusible molecules increasing phlA expression, suggesting that communication with rhizosphere bacteria is part of the pathogen response of plants. Tripartite interactions among plants, pathogens, and bacteria appear as a novel determinant of plant response to root pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthetic tissues, the major food source of many invertebrates and vertebrates, are well defended. Many defence traits in leaves are controlled via the jasmonate signalling pathway in which jasmonate acts as a hormone by binding to a receptor to activate responses that lead to increased resistance to invertebrate folivores. We predicted that mutations in jasmonate synthesis might also increase the vulnerability of leaves to vertebrate folivores and tested this hypothesis using the Eastern Hermann's tortoise (Eurotestudo boettgeri) and an Arabidopsis thaliana (Brassicaceae) allene oxide synthase (aos) mutant unable to synthesize jasmonate. Tortoises preferred the aos mutant over the wild type (WT). Based on these results, we then investigated the effect of mutating jasmonate perception using a segregating population of the recessive A. thaliana jasmonate receptor mutant coronatine insensitive1-1 (coi1-1). Genotyping of these plants after tortoise feeding revealed that the homozygous coi1-1 receptor mutant was consumed more readily than the heterozygous mutant or the WT. Therefore, the plant's ability to synthesize or perceive jasmonate reduces feeding by a vertebrate herbivore. We also tested whether or not tortoise feeding behaviour was influenced by glucosinolates, the principal defence chemicals in Arabidopsis leaves with known roles in defence against many generalist insects. However, in contrast to what has been observed with such insects, leaves in which the levels of these compounds were reduced genetically were consumed at a similar rate to those of the WT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degradation of fatty acids having cis-double bonds on even-numbered carbons requires the presence of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. Two alternative pathways have been described to degrade these fatty acids. One pathway involves the participation of the enzymes 2, 4-dienoyl-coenzyme A (CoA) reductase and Delta(3)-Delta(2)-enoyl-CoA isomerase, whereas the second involves the epimerization of R-3-hydroxyacyl-CoA via a 3-hydroxyacyl-CoA epimerase or the action of two stereo-specific enoyl-CoA hydratases. Although degradation of these fatty acids in bacteria and mammalian peroxisomes was shown to involve mainly the reductase-isomerase pathway, previous analysis of the relative activity of the enoyl-CoA hydratase II (also called R-3-hydroxyacyl-CoA hydro-lyase) and 2,4-dienoyl-CoA reductase in plants indicated that degradation occurred mainly through the epimerase pathway. We have examined the implication of both pathways in transgenic Arabidopsis expressing the polyhydroxyalkanoate synthase from Pseudomonas aeruginosa in peroxisomes and producing polyhydroxyalkanoate from the 3-hydroxyacyl-CoA intermediates of the beta-oxidation cycle. Analysis of the polyhydroxyalkanoate synthesized in plants grown in media containing cis-10-heptadecenoic or cis-10-pentadecenoic acids revealed a significant contribution of both the reductase-isomerase and epimerase pathways to the degradation of these fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The population ecology of clonal plants depends on the number and distribution of ramets formed during growth. Variation in clonal reproduction has previously been explained by variation in effects of abiotic resource heterogeneity and by plant genotypic variation. Different co-occurring species of the mutualistic arbuscular mycorrhizal fungi (AMF) have been shown to differentially alter growth traits of Prunella vulgaris which we hypothesize would lead to changes in clonal reproduction. Two experiments were carried out to test whether different co-occurring mycorrhizal fungi significantly influence clonal reproduction of P. vulgaris whether this effect also occurs when P. vulgaris is growing in an artificial plant community and how the effects compare with plant genotype effects on clonal growth of P. vulgaris. In the first experiment the number of ramets of P. vulgaris growing in a plant community of simulated calcareous grassland was significantly affected by inoculation with different mycorrhizal fungi. The number of ramets produced by P. vulgaris differed by a factor of up to 1.8 with different mycorrhizal fungi. The fungal effects on the number of new ramets were independent of their effects on the biomass of P. vulgaris. In a second experiment 17 different genotypes of P. vulgaris were inoculated with different mycorrhizal fungi. There were significant main effects of genotypes and mycorrhizal fungi on clonal reproduction of P. vulgaris. The effect of different mycorrhizal fungi contributed more than the effect of plant genotype to variation in size and ramet production. However mean stolon length and spacer length which determine the spatial arrangement of ramets were only significantly affected by plant genotype. There were no mycorrhizal fungal X plant genotype interactions on clonal growth of P. vulgaris indicating that there is no obvious evidence that selection pressures would favor further coevolution between P. vulgaris and mycorrhizal fungal species. In natural communities plants can be colonized by several different AMF at the same time. The effect of the mixed AMF treatment on the growth and clonal reproduction of P. vulgaris could not be predicted from the responses of the plants to the single AMF To what extent however the patterns of colonization by different AMF differ among plants in a natural community is unknown. Since the effects of AMF on growth and clonal reproduction occur on a population of P. vulgaris in a microcosm plant community and because the effects are also as great as those caused by plant genotypic variation we conclude that the effects are strong enough to potentially affect population size and variation of clonal plants in communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies have investigated the impacts that climate change could potentially have on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have been using the simplification of considering dispersal as either unlimited or null. However, depending on a species' dispersal capacity, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of a species' future distribution. To quantify the discrepancies between unlimited, realistic, and no dispersal scenarios, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the Western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal and realistic dispersal with long-distance dispersal events) and under four climate change scenarios. Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, using the unlimited dispersal simplification nevertheless provided good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analyzing the temporal pattern of species extinctions over the entire 21st century showed that, due to the possibility of a large number of species shifting their distribution to higher elevation, important species extinctions for our study area might not occur before the 2080-2100 time periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and nuclear RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé: Alpine plants living at high altitudes undergo a series of climatic stress factors (chilling, enhanced UV radiation, short growing season, low nutriment supply...) which may influence their secondary compounds composition. Many publications showed in these last years that plants under stress conditions do synthesize a range of specific defence compounds (terpenes, flavonoids, coumarines...). A careful phytochemical investigation of those plants could therefore lead to the discovery of active molecules. Thus, for the biological and chemical screening, about 30 alpine plants have been collected above 2000 metres, in the alpine grass-lands. Eriophorum scheuchzeri Hoppe (Cyperaceae), not yet investigated phytochemically, revealed in its lipophilic and polar extracts the presence of various radical scavengers in a TLC autography with the DPPH (2,2-dipheny1-1- picrylhydrazyl) radical as spray reagent, as well as several antifungal compounds acitve against Cladosporium cucumerinum and Candida albi cans. The first part of this study consisted in the detection, isolation and characterization of the bioactive natural compounds present in the lipophilic extract of Eriophorum scheuchzeri. Among the eight isolated compounds, six were isoflavones. No isoflavones have been reported in the Cyperaceae family yet, nor in related families such as Poaceae or Juncaceae. Besides, isoflavones are generally rare in the plant kingdom and and they occur only in some families, such as Fabaceae, Rosaceae or Myristicaceae. In addition, out of these six isoflavones, three were new isoflavones. The known compounds were parvisoflavone A and B and cajanin which are already known isoflavones in the Fabaceae family. Two of the new isoflavones were particular, as they were C-methylated on the B-ring at the C-3' position. Methylated flavonoids are particularly rare in the plant kingdom. At present, no C-methylated isoflavones with methyl groups on the B-ring have ever been reported. The fourth new compound was a prenylated flavanone. Flavanones are also rare in the Cyperaceae family since they were found only in two genera (Cyperus and Schoenus). Finally, the widespread flavone tricin, characteristic of the Cyperaceae and Poaceae family has also been isolated. The second part of this study consisted in the characterization of the polar components present in the Me0H extract. In order to obtain mass and UV information about the secondary compounds present in the Eriophorum scheuchzeri methanolic extract, a LC-UV/DAD-APCl/MSn analysis has been performed as a first dereplication step. The UV/DAD spectra showed the presence of polyphenol compounds (phenylpropanoids and flavonoids). The LC-APCI/MSn analysis allowed the determination of the molecular weight of these compounds. Moreover, the fragmentation pattern of the [M+H]+ ions indicated presence of mono-, di- and tri-glycosides. LC-UV in combination with UV shift reagents added post-column was used in a second phase for the structural elucidation of the flavonoids. It allowed the positioning of the sugars on the aglycones. Finally, LC-NMR was used for a more detailed structural investigation of the compounds present in the crude MEOH extract. Thus, 10 fiavonoids have been totally or partially characterized by LC-UV-MS and LC-1H-RMN and UV-shift reagents added post column. However, the information obtained on-line was not always sufficient to allow a complete identification of all the compounds. Some of these compounds especially those with more than two sugar units attached to them, have been isolated in order to proceed to their complete characterization. Moreover, the Eriophorum scheuchzeri species was compared to two other species from the same genus. A LC-UV-ESI/MS analysis enabled a survey of the chemical composition of the DCM extracts of two related species E. angustifolium (Honck) and E. latifolium (Hoppe). The chromatograms of the three species showed some similarities in their flavonoid contents, especially by the recurrent presence of three compounds. The MEOH extracts of all three species have been compared by means of LC-UV-APCl/MS analyses. The chromatographic profile of all the three species showed even closer similarities than those found in the DCM extracts. E. angustifolium Honck. and E. latifolium species showed 7 compounds in common. Finally, the pure compounds obtained from the DCM (CH2Cl2) fraction were tested at different concentration, in order to evaluate their chemical and biological activities. All eight compounds showed an anti-scavenger activity against the DPPH radical, and four compounds showed antifungal activities against Cladosporium cucumerinum and Candida albicans. The pure compounds isolated from the MeOH extract were tested only for their biological activities as their antioxidant activity is already well documented in the literature. No compound showed a biological activity against Cladosporium cucumerinum and Candida albicans. Résumé: De nombreux travaux ont démontré ces dernières décennies que les plantes soumises à différents types de stress (basse température, UV, stress hydrique) synthétisent des composés secondaires (fiavonoides, coumarines, terpènes...) de protection et de défense. Les plantes d'altitude par exemple qui sont exposées à des conditions climatiques et environnementales difficiles, ont tendance à synthétiser des substances antioxydantes et antiradicalaires. Une investigation phytochirnique de ces plantes a conduit à la découverte de nouvelles molécules actives. Ainsi plusieurs plantes alpines ont été sélectionnées en fonction de leur habitat en vue de les soumettre aux tests biologiques (antifongiques) et chimiques (antiradicalaires) menés en routine dans notre laboratoire. Dans ce criblage biologique préliminaire, les extraits d'Eriophorum scheuchzeri Hoppe (Cyperaceae) ont réagi positivement aux différents tests. Il a donc été décidé d'entreprendre l'isolement des composés actifs. La première partie de ce travail a consisté à détecter, isoler et caractériser les composés naturels actifs présents dans l'extrait apolaire d' Eriophorum scheuchzeri. Parmi les huit composés isolés, quatre d'entre eux sont nouveaux. Un de ces produits est une flavanone et trois sont de nouvelles isoflavones, particulièrement intéressantes car elles possèdent des groupements C-méthylés au niveau du cycle B. Les flavonoides C-méthylés sont peu répandus dans le règne végétal et les rares exemples connus sont généralement C-méthylés sur le cycle A. Les quatre autres composés isolés n'ont jamais été décrits dans cette famille. Il s'agit d' isoflavones, les parvisoflavones A et B et la cajanine. Enfin, la flavone tricine, flavonoide caractéristique des Cyperaceae et des Poaceae a également été isolée. La deuxième partie de ce travail a consisté à caractériser les constituants polaires présents dans l'extrait methanolique. L'extrait a été analysé par chromatographie analytique couplée à différentes méthodes spectroscopiques (LC-UV-MS et LC-UV-1H RMN). De cette façon, douze flavonoides et un dérivé du phénylpropane, l'acide chlorogénique ont été identifiés. Les flavonoides tri-glycosylés ont dû être isolés afin de déterminer la nature et l'enchaînement des sucres. Finalement, l'espèce Eriophorum scheuchzeri a été comparée à deux autres espèces d' Eriophorum, soit E. angustifolium et E. latifolium. En conclusion, cette étude phytochimique a abouti à l'isolement de plusieurs nouvelles isoflavones aux activités antioxydantes et antifongiques ainsi qu'oestrogéniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remorins form a superfamily of plant-specific plasma membrane/lipid-raft-associated proteins of unknown structure and function. Using specific antibodies, we localized tomato remorin 1 to apical tissues, leaf primordia and vascular traces. The deduced remorin protein sequence contains a predicted coiled coil-domain, suggesting its participation in protein-protein interactions. Circular dichroism revealed that recombinant potato remorin contains an alpha-helical region that forms a functional coiled-coil domain. Electron microscopy of purified preparations of four different recombinant remorins, one from potato, two divergent isologs from tomato, and one from Arabidopsis thaliana , demonstrated that the proteins form highly similar filamentous structures. The diameters of the negatively-stained filaments ranged from 4.6-7.4 nm for potato remorin 1, 4.3-6.2 nm for tomato remorin 1, 5.7-7.5 nm for tomato remorin 2, and 5.7-8.0 nm for Arabidopsis Dbp. Highly polymerized remorin 1 was detected in glutaraldehyde-crosslinked tomato plasma membrane preparations and a population of the protein was immunolocalized in tomato root tips to structures associated with discrete regions of the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To evaluate the effects of using distinct alternative sets of climatic predictor variables on the performance, spatial predictions and future projections of species distribution models (SDMs) for rare plants in an arid environment. . Location Atacama and Peruvian Deserts, South America (18º30'S - 31º30'S, 0 - 3 000 m) Methods We modelled the present and future potential distributions of 13 species of Heliotropium sect. Cochranea, a plant group with a centre of diversity in the Atacama Desert. We developed and applied a sequential procedure, starting from climate monthly variables, to derive six alternative sets of climatic predictor variables. We used them to fit models with eight modelling techniques within an ensemble forecasting framework, and derived climate change projections for each of them. We evaluated the effects of using these alternative sets of predictor variables on performance, spatial predictions and projections of SDMs using Generalised Linear Mixed Models (GLMM). Results The use of distinct sets of climatic predictor variables did not have a significant effect on overall metrics of model performance, but had significant effects on present and future spatial predictions. Main conclusion Using different sets of climatic predictors can yield the same model fits but different spatial predictions of current and future species distributions. This represents a new form of uncertainty in model-based estimates of extinction risk that may need to be better acknowledged and quantified in future SDM studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we enlarged our previous investigation focusing on the biodiversity of chlamydiae and amoebae in a drinking water treatment plant, by the inclusion of two additional plants and by searching also for the presence of legionellae and mycobacteria. Autochthonous amoebae were recovered onto non-nutritive agar, identified by 18S rRNA gene sequencing, and screened for the presence of bacterial endosymbionts. Bacteria were also searched for by Acanthamoeba co-culture. From a total of 125 samples, we recovered 38 amoebae, among which six harboured endosymbionts (three chlamydiae and three legionellae). In addition, we recovered by amoebal co-culture 11 chlamydiae, 36 legionellae (no L. pneumophila), and 24 mycobacteria (all rapid-growers). Two plants presented a similar percentage of samples positive for chlamydiae (11%), mycobacteria (20%) and amoebae (27%), whereas in the third plant the number of recovered bacteria was almost twice higher. Each plant exhibited a relatively high specific microbiota. Amoebae were mainly represented by various Naegleria species, Acanthamoeba species and Hartmannella vermiformis. Parachlamydiaceae were the most abundant chlamydiae (8 strains in total), and in this study we recovered a new genus-level strain, along with new chlamydiae previously reported. Similarly, about 66% of the recovered legionellae and 47% of the isolated mycobacteria could represent new species. Our work highlighted a high species diversity among legionellae and mycobacteria, dominated by putative new species, and it confirmed the presence of chlamydiae in these artificial water systems.