120 resultados para light limitation
Resumo:
We have reported that ingesting a meal immediately after exercise increased skeletal muscle accretion and less adipose tissue accumulation in rats employed in a 10 week resistance exercise program. We hypothesized that a possible increase in the resting metabolic rate (RMR) as a result of the larger skeletal muscle mass might be responsible for the less adipose deposition. Therefore, the effect of the timing of a protein supplement after resistance exercise on body composition and the RMR was investigated in 17 slightly overweight men. The subjects participated in a 12-week weight reduction program consisting of mild energy restriction (17% energy intake reduction) and a light resistance exercise using a pair of dumbbells (3-5 kg). The subjects were assigned to two groups. Group S ingested a protein supplement (10 g protein, 7 g carbohydrate, 3.3 g fat and one-third of recommended daily allowance (RDA) of vitamins and minerals) immediately after exercise. Group C did not ingest the supplement. Daily intake of both energy and protein was equal between the two groups and the protein intake met the RDA. After 12 weeks, the bodyweight, skinfold thickness, girth of waist and hip and percentage bodyfat significantly decreased in the both groups, however, no significant differences were observed between the groups. The fat-free mass significantly decreased in C, whereas its decrease in S was not significant. The RMR and post-meal total energy output significantly increased in S, while these variables did not change in C. In addition, the urinary nitrogen excretion tended to increase in C but not in S. These results suggest that the RMR increase observed in S might be associated with an increase in body protein synthesis.
Resumo:
Mutualism often involves reciprocal exploitation due to individual selection for increased benefits even at the expense of the partner. Therefore, stability and outcomes of such interactions crucially depend on cost limitation mechanisms. In the plant, pollinator /seed predator interaction between Silene latifolia (Caryophyllaceae) and Hadena bicruris (Lepidoptera: Noctuidae), moths generate pollination benefits as adults but impose seed predation costs as larvae. We examined whether floral morphology limits over-exploitation by constraining oviposition site. Oviposition site varies naturally inside vs. outside the corolla tube, but neither its determinants nor its effect on the interaction have been investigated. In a common garden with plants originating from eight populations, corolla tube length predicted oviposition site, but not egg presence or pollination efficiency, suggesting that long corolla tubes constrain the moth to lay eggs on petals. Egg position was also predicted by the combined effect of corolla tube and moth ovipositor lengths, with shorter ovipositor than corolla tube resulting in higher probability for eggs outside. Egg position on a given plant was repeatable over different exposure nights. When egg position was experimentally manipulated, eggs placed on the petal resulted in significantly fewer successful fruit attacks compared with eggs placed inside the corolla tube, suggesting differences in egg/larval mortality. Egg position also differently affected larval mass, fruit mass and fruit development. Our results indicate that constraining oviposition site through a long corolla tube reduces seed predation costs suffered by the plant without negatively affecting pollination efficiency and, hence may act to limit over-exploitation. However, the net effects of corolla tube depth variation on this interaction may fluctuate with extrinsic factors affecting egg mortality, and with patterns of gene flow affecting trait matching between the interacting species. The intermediate fitness costs incurred by both plant and insect associated with the different egg positions may reduce selective pressures for this interaction to evolve towards antagonism, favouring instead a mutualistic outcome. While a role for oviposition site variation in cost limitation is a novel finding in this system, it may apply more generally also to other mutualisms involving pollinating seed predators.
Resumo:
PURPOSE: Nonvisual light-dependent functions in humans are conveyed mainly by intrinsically photosensitive retinal ganglion cells, which express melanopsin as photopigment. We aimed to identify the effects of circadian phase and sleepiness across 24 hours on various aspects of the pupil response to light stimulation. METHODS: We tested 10 healthy adults hourly in two 12-hour sessions covering a 24-hour period. Pupil responses to narrow bandwidth red (635 ± 18 nm) and blue (463 ± 24 nm) light (duration of 1 and 30 seconds) at equal photon fluxes were recorded, and correlated with salivary melatonin concentrations at the same circadian phases and to subjective sleepiness ratings. The magnitude of pupil constriction was determined from minimal pupil size. The post-stimulus pupil response was assessed from the pupil size at 6 seconds following light offset, the area within the redilation curve, and the exponential rate of redilation. RESULTS: Among the measured parameters, the pupil size 6 seconds after light offset correlated with melatonin concentrations (P < 0.05) and showed a significant modulation over 24 hours with maximal values after the nocturnal peak of melatonin secretion. In contrast, the post-stimulus pupil response following red light stimulation correlated with subjective sleepiness (P < 0.05) without significant changes over 24 hours. CONCLUSIONS: The post-stimulus pupil response to blue light as a marker of intrinsic melanopsin activity demonstrated a circadian modulation. In contrast, the effect of sleepiness was more apparent in the cone contribution to the pupil response. Thus, pupillary responsiveness to light is under influence of the endogenous circadian clock and subjective sleepiness.
Resumo:
The legislatives evolutions imply an important recourse to the psychiatric expertise in order to evaluate the potential dangerousness of a subject. However, in spite of the development of techniques and tools for this evaluation, the dangerousness assessment of a subject is in practice extremely complex and discussed in the scientific literature. The evolution of the concept of dangerousness to the risk assessment involved a technicisation of this evaluation which should not make forget the limits of these tools and the need for restoring the subject, the meaning and the clinic in this evaluation.
Resumo:
The ring sulfoxidation of thioridazine (THD), a widely used neuroleptic agent, yields two diastereoisomeric pairs, fast- and slow-eluting (FE and SE) thioridazine 5-sulfoxide (THD 5-SO). Until now, studies in which concentrations of these metabolites were measured in THD-treated patients have revealed no significant differences in their concentrations. Preliminary experiments in our laboratory had shown that sunlight and, to a lesser extent, dim daylight led to racemization and probably also to photolysis of the diastereoisomeric pairs as measured by high-performance liquid chromatography. Similar results were also obtained with direct UV light (UV lamp). In appropriate light-protected conditions, THD, northioridazine, mesoridazine, sulforidazine, and FE and SE THD 5-SO were measured in 11 patients treated with various doses of THD for at least 1 week. Significantly higher concentrations of the FE stereoisomeric pair were found. The concentration ratios THD 5-SO (FE)/THD 5-SO (SE) ranged from 0.89 to 1.75 in plasma and from 1.15 to 2.05 in urine. Because it is known that the ring sulfoxide contributes to the cardiotoxicity of the drug even more potently than the parent compound does, these results justify further studies to determine whether there is stereoselectivity in the cardiotoxicity of THD 5-SO.
Resumo:
Summary Copper is an important trace element and micronutrient for living organisms as it is the cofactor of several enzymes involved in diverse biological redox processes such as aerobic respiration, denitrification and photosynthesis. Despite its importance, copper may be poorly bioavailable in soils and aquatic environments, as well as in the human body, especially at physiological or alkaline pH. In this work, we have investigated the strategies that the versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa has evolved to face and overcome copper limitation. The global response of the P. aeruginosa to copper limitation was assessed under aerobic conditions. Numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were down-regulated whereas expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was up-regulated. Wild type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper by a copper chelator, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases. These results suggest that the CioAB enzyme can be used as a by-pass strategy to overcome severe copper limitation and perform aerobic respiration even if virtually no copper is available. The PA0114 gene, which encodes a protein of the SCOT/SenC family, was found to be important for copper acquisition and aerobic respiration in low copper conditions. A PA0114 (sent) mutant grew poorly in low copper media and had low terminal oxidase activity with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine), but expressed the CioAB enzyme at elevated levels. Addition of copper reversed these phenotypes, suggesting that periplasmic copper capture by the SenC protein is another strategy that helps P. aeruginosa to adapt to copper deprivation. RESUME Le cuivre est un micronutriment important pour les organismes vivants. Il représente le cofacteur de plusieurs enzymes impliquées dans une multitude de processus biologiques tels que la respiration aérobie, la dénitrification et la photosynthèse. Malgré son importance, le cuivre peut être peu disponible dans les sols, les environnements aquatiques et le corps humain, spécialement à pH physiologique ou alcalin. Dans ce travail nous avons étudié les stratégies développées par la bactérie pathogène opportuniste Pseudomonas aeruginosa PAO1 afm de faire face et de surmonter le manque de cuivre. La réponse globale de P. aeruginosa à la carence de cuivre a été analysée dans des conditions aérobie. Les résultats obtenus ont montré que plusieurs gènes impliqués dans l'acquisition du fer, tels que les gènes codant pour les sidérophores (pyoverdine et pyochéline), étaient réprimés, tandis que l'expression de l'opéron cioAB, codant pour l'oxydase terminale insensible au cyanure (CIO), était augmentée. La souche sauvage P. aeruginosa est capable de croître dans un milieu où la concentration en cuivre est limitée, due à la présence d'un chélateur spéciftque de cuivre, tandis que le mutant cioAB ne croît pas dans ces conditions. Nous avons conclu que P. aeruginosa nécessite l'oxydase terminale CIO pour faire face à la carence en cuivre. Un quadruple mutant affecté dans toutes les oxydases dépendantes du cuivre (cyo ccol cco2 cox) et appartenant aux oxydases de type hème-cuivre, peut croître en aérobie, néanmoins plus lentement que la souche sauvage, ce qui montre que l'enzyme CIO est capable de conserver l'énergie. L'expression de la fusion rapportrice cioA'-'IacZ chez le quadruple mutant est moins dépendante de la disponibilité de cuivre que chez la souche sauvage. Ces résultats suggèrent que la disponibilité de cuivre influence l'expression de cioAB d'une façon indirecte, par le biais des oxydases terminales de type héme-cuivre. Il est donc possible qu'en cas de carence de cuivre, P. aeruginosa utilise l'enzyme CIO comme stratégie afin de surmonter ce manque et de réaliser la respiration aérobie. Nous avons démontré que le gène PA0114, codant pour une protéine appartenant à la famille SCO1/SenC, est important dans l'acquisition et dans la respiration aérobie dans des environnements où le cuivre est présent en faible concentration. En ces conditions, la croissance du mutant senC est faible; de plus, l'activité des oxydases terminales en présence du donneur d'électrons TMPD (N,N,N,N'-tetraméthyl-p-phénylenediamine) est basse. Toutefois, l'addition de cuivre au milieu de culture permet de restaurer le phénotype du type sauvage. Ces résultats montrent que la protéine SenC est capable d'acquérir le cuivre et représente donc une autre stratégie chez P. aeruginosa pour s'adapter à un manque de cuivre.
Resumo:
SUMMARY : Phytochromes constitute a family of red/far-red photoreceptors regulating all the major transitions during the life cycle of plants. In Arabidopsis, five members: phyA,_ B, C, D and E, were identified. Phytochromes are synthesized in their inactive red-light absorbing form called Pr. Upon light absorbance they convert to the far-red light absorbing Pfr form. The Pfr form is the active conformer which converts back to the Pr form either rapidly upon far-red perception or in a slower process called dark reversion. ph~A represents an exception, in that it does not significantly dark-revert and two specific processes have been developed by the plants to decrease the amount of biologically active phyA. The first one is alight-dependent repression of the PHYA gene expression and the second one is alight-dependent degradation of the phyA protein. The latter is the most efficient process to rapidly decrease the level of active phyA. The ability of plants to regulate the amount of active phyA is critical in a far-red rich environment, a situation observed under a canopy. In these conditions, phyA is essential to induce the germination and the deetiolation of the young seedling. Later in the development the ability of phyA to repress growth counteracts the shade avoidance response. Therefore decreasing the amount of phyA allows stem growth and to compete with neighbours for the light. In this thesis, I investigate the light-dependent degradation of phyA. I developed a reverse genetic approach based on the systematic analysis of the light-dependent accumulation of phyA in the different cullin mutant cull, cul3a; cul3b and cul4. This analysis allowed me to show that CUL1 and CUL3A-based E3 ligase complexes are involved in the regulation of phyA degradation. Surprisingly, our results also demonstrate that cu14 is not affected in the degradation of phyA whereas constitutive Photomorphogenic 1 (COP1) a subunit of one CUL4based E3 complex was reported to be involved. Further investigations showed that the phenotype of cop1 is conditional, the mutant being defective in phyA degradation only in the presence of metabolisable sugars. I also showed that phyA is degraded by a proteasome-dependent mechanism both in the cytoplasm and in the nucleus using mutants and transgenic lines affected in the localization of phyA. Interestingly, I observed that phyA degradation was faster in the nucleus than in the cytosol and that rapid degradation of Pr also occurred in the nucleus suggesting that cytosolic accumulation of phyA in the dark is a way to regulate its proteolysis. Finally, we identify a short region similar to a PEST sequence required for phyA stability and we developed a unbiased genetic screen to identify new components involved in the regulation of the light-dependent degradation of phyA. The significance of these results are discussed. RESUME : Les phytochromes (phy) constituent une famille de photorécepteurs absorbant la lumière rouge et rouge lointaine et régulant toutes les étapes de transitions majeures dans la vie des plantes. Chez Arabidopsis, cinq membres : phyA, B, C, D et E ont été identifiés. Les phytochromes sont synthétisés sous une forme inactive appelée Pr absorbant la lumière rouge. Après perception de lumière ils passent sous une forme active Pfr absorbant dans le rouge lointain. La forme Pfr peut retourner sous la forme Pr après absorption de lumiëre rouge lointaine ou dans un processus lent appelé «réversion à l'obscurité ». phyA représente une exception à cette règle car il ne retoune pas significativement sous sa forme inactive dans le noir. Deux processus spécifiques ont donc été développés pour diminuer le taux de phyA actif. Le premier consiste en la répression du gène PHYA en condition de lumière et le second en une dégradation induite par la lumière de la protéine phyA. Ce dernier processus est le plus efficace pour diminuer rapidement le niveau de phyA. La capacité des plantes à réguler le taux de phyA actifs est critique dans un environnement riche en lumière rouge lointaine, une situation observée sous une canopée. Sous une canopée, phyA est essentiel pour induire la germination et la dé-étiolation de la jeune pousse. Plus tard dans le développement la capacité de phyA de réprimer la croissance freine la «réponse à l'évitement de l'ombre ». Par conséquent diminuer le taux de phyA permet la croissance de la tige et donc de rentrer en compétition pour la lumière avec les plantes avoisinantes. Dans cette thèse, j'ai étudié la dégradation de phyA. J'ai développé une approche génétique inverse basée sur l'analyse systématique de l'accumulation de phyA en condition de lumière dans les différents mutants cullin, cul1, cul3a, cul3b et cul4. Ces analyses nous ont permis d'identifier qu'un complexe E3 ligase CUL1 et un complexe E3 ligase CUL3A sont impliqués dans la régulation de la dégradation de phyA. Mes résultats démontrent aussi que le mutant cul4 n'est pas affecté dans la dégradation de phyA alors que Çonstitutive Photomorphogenic 1 (COPI) une sous unité d'un complexe CUL4 à été identifier dans la régulation de cette dégradation. Des analyses supplémentaires suggèrent que l'effet de la mutation cop1 est dépendante dë la présence de sucres métabolisables. J'ai aussi montré que phyA est dégradé dans le noyau et dans le cytoplasme par un mécanisme dépendant du protéasome et que la dégradation dans le.noyau est non seulement aspécifique de la forme Pr ou Pfr mais aussi est plus rapide que dans le cytoplasme. Ceci suggère que l'accumulation de phyA dans le cytoplasme permet son accumulation à des niveaux élevés à l'obscurité. Enfin j'ai identifié une région similaire à un motif PEST requise pour la stabilité de phyA et j'ai aussi développé un criblage génétique non biaisé pour identifier de nouveaux composants impliqués dans la régulation de la dégradation de phyA. L'importance de ces résultats est discutée dans le dernier chapitre de cette thèse.
Resumo:
Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.
Resumo:
Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.
Resumo:
The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner. With the mass marketing of laser printers and the popularity of rollerball pens, the determination of line crossing sequences between such instruments is encountered by forensic document examiners. This type of crossing presents difficulties with optical microscopic line crossing techniques involving ballpoint pens or gel pens and toner (1-4). Indeed, the rollerball's aqueous ink penetrates through the toner and is absorbed by the fibers of the paper, leaving the examiner with the impression that the toner is above the ink even when it is not (5). Novotny and Westwood (3) investigated the possibility of determining aqueous ink and toner crossing sequences by microscopic observation of the intersection before and after toner removal. A major disadvantage of their study resides in destruction of the sample by scraping off the toner line to see what was underneath. The aim of this research was to investigate the ways to overcome these difficulties through digital microscopy and three-dimensional (3-D) laser profilometry. The former was used as a technique for the determination of sequences between gel pen and toner printing strokes, but provided less conclusive results than that of an optical stereomicroscope (4). 3-D laser profilometry, which allows one to observe and measure the topography of a surface, has been the subject of a number of recent studies in this area. Berx and De Kinder (6) and Schirripa Spagnolo (7,8) have tested the application of laser profilometry to determine the sequence of intersections of several lines. The results obtained in these studies overcome disadvantages of other methods applied in this area, such as scanning electron microscope or the atomic force microscope. The main advantages of 3-D laser profilometry include the ease of implementation of the technique and its nondestructive nature, which does not require sample preparation (8-10). Moreover, the technique is reproducible and presents a high degree of freedom in the vertical axes (up to 1000 μm). However, when the paper surface presents a given roughness, if the pen impressions alter the paper with a depth similar to the roughness of medium, the results are not always conclusive (8). It becomes difficult in this case to distinguish which characteristics can be imputed to the pen impressions or the quality of the paper surface. This important limitation is assessed by testing different types of paper of variable quality (of different grammage and finishing) and the writing pressure. The authors will therefore assess the limits of 3-D laser profilometry technique and determine whether the method can overcome such constraints. Second, the authors will investigate the use of digital microscopy because it presents a number of advantages: it is efficient, user-friendly, and provides an objective evaluation and interpretation.
Resumo:
Plants such as Arabidopsis thaliana respond to foliar shade and neighbors who may become competitors for light resources by elongation growth to secure access to unfiltered sunlight. Challenges faced during this shade avoidance response (SAR) are different under a light-absorbing canopy and during neighbor detection where light remains abundant. In both situations, elongation growth depends on auxin and transcription factors of the phytochrome interacting factor (PIF) class. Using a computational modeling approach to study the SAR regulatory network, we identify and experimentally validate a previously unidentified role for long hypocotyl in far red 1, a negative regulator of the PIFs. Moreover, we find that during neighbor detection, growth is promoted primarily by the production of auxin. In contrast, in true shade, the system operates with less auxin but with an increased sensitivity to the hormonal signal. Our data suggest that this latter signal is less robust, which may reflect a cost-to-robustness tradeoff, a system trait long recognized by engineers and forming the basis of information theory.
Resumo:
Light adaptation is crucial for coping with the varying levels of ambient light. Using high-density electroencephalography (EEG), we investigated how adaptation to light of different colors affects brain responsiveness. In a within-subject design, sixteen young participants were adapted first to dim white light and then to blue, green, red, or white bright light (one color per session in a randomized order). Immediately after both dim and bright light adaptation, we presented brief light pulses and recorded event-related potentials (ERPs). We analyzed ERP response strengths and brain topographies and determined the underlying sources using electrical source imaging. Between 150 and 261ms after stimulus onset, the global field power (GFP) was higher after dim than bright light adaptation. This effect was most pronounced with red light and localized in the frontal lobe, the fusiform gyrus, the occipital lobe and the cerebellum. After bright light adaptation, within the first 100ms after light onset, stronger responses were found than after dim light adaptation for all colors except for red light. Differences between conditions were localized in the frontal lobe, the cingulate gyrus, and the cerebellum. These results indicate that very short-term EEG brain responses are influenced by prior light adaptation and the spectral quality of the light stimulus. We show that the early EEG responses are differently affected by adaptation to different colors of light which may contribute to known differences in performance and reaction times in cognitive tests.