100 resultados para journalism and death
Resumo:
PURPOSE: To assess the sensitivity and false positive rate (FPR) of neurological examination and somatosensory evoked potentials (SSEPs) to predict poor outcome in adult patients treated with therapeutic hypothermia after cardiopulmonary resuscitation (CPR). METHODS: MEDLINE and EMBASE were searched for cohort studies describing the association of clinical neurological examination or SSEPs after return of spontaneous circulation with neurological outcome. Poor outcome was defined as severe disability, vegetative state and death. Sensitivity and FPR were determined. RESULTS: A total of 1,153 patients from ten studies were included. The FPR of a bilaterally absent cortical N20 response of the SSEP could be calculated from nine studies including 492 patients. The SSEP had an FPR of 0.007 (confidence interval, CI, 0.001-0.047) to predict poor outcome. The Glasgow coma score (GCS) motor response was assessed in 811 patients from nine studies. A GCS motor score of 1-2 at 72 h had a high FPR of 0.21 (CI 0.08-0.43). Corneal reflex and pupillary reactivity at 72 h after the arrest were available in 429 and 566 patients, respectively. Bilaterally absent corneal reflexes had an FPR of 0.02 (CI 0.002-0.13). Bilaterally absent pupillary reflexes had an FPR of 0.004 (CI 0.001-0.03). CONCLUSIONS: At 72 h after the arrest the motor response to painful stimuli and the corneal reflexes are not a reliable tool for the early prediction of poor outcome in patients treated with hypothermia. The reliability of the pupillary response to light and the SSEP is comparable to that in patients not treated with hypothermia.
Resumo:
L'insuline est une hormone qui diminue la concentration de sucre dans le sang et qui est produite par la cellule β du pancréas. Un défaut de production de cette hormone est une des causes principales du diabète. Cette perte de production d'insuline est la conséquence à la fois, de la réduction du nombre de cellules β et du mauvais fonctionnement des cellules β restantes. L'inflammation, en activant la voie de signalisation «c-Jun N-terminal Kinase» (JNK) contribue au déclin de ces cellules. Cette voie de signalisation est activée par des protéines telles que des kinases qui reçoivent le signal de stress. Dans ce travail de thèse nous nous sommes intéressés à étudier le rôle de «Dual leucine zipper bearing kinase» (DLK) comme protéine capable de relayer le stress inflammatoire vers l'activation de la voie JNK dans les cellules β-pancréatiques. Nous montrons que DLK est présente dans les cellules β-pancréatiques et qu'elle agit effectivement comme un activateur de la voie de signalisation de JNK. En outre, DLK joue un rôle clé dans le contrôle de l'expression de l'insuline, de la sécrétion de l'insuline en réponse au glucose et au maintien de la survie des cellules β. Si l'expression de cette protéine diminue, la cellule produit moins d'insuline et sera plus sensible à la mort en réponse au stress inflammatoire. A l'inverse si l'expression de DLK est augmentée, la cellule β produit et secrète plus d'insuline. Des variations de l'expression de DLK sont par ailleurs, associées à l'état de santé de la cellule β. Chez la ratte en gestation ou la souris obèse, dans lesquelles la cellule β produit plus d'insuline, l'expression de DLK est augmentée. En revanche dans les cellules β des patients diabétiques, l'expression de DLK est diminuée par rapport aux cellules non malades. En résumé, DLK est nécessaire pour le bon fonctionnement de la cellule β-pancréatique et son expression corrèle avec le degré de santé des cellules, faisant que cette protéine pourrait être une cible thérapeutique potentiel. Les cellules β-pancréatiques ont la capacité de réguler la sécrétion d'insuline en s'adaptant précisément au stimulus et à la glycémie. La fonction de la cellule β est cruciale dans l'homéostasie du glucose puisque sa dysfonction et sa mort mènent au développement des diabètes de type 1 et 2. De nombreuses études suggèrent que l'inflammation pourrait avoir un rôle dans la dysfonction et la destruction de ces cellules dans le diabète de type 2. L'excès chronique de cytokines proinflammatoires accélère le dysfonctionnement de la cellule β pancréatique par un mécanisme qui implique la voie de signalisation «c-Jun N-terminal Kinase» (JNK). L'activation de cette voie est organisée par des protéines d'échafaudages. Elle se fait par trois étapes successives de phosphorylation impliquant une «Mitogen Activated Protein Kinase Kinase Kinase» (MAP3K), une MAP2K et JNK. Dans ce travail de thèse nous montrons l'expression abondante et spécifique de la MAP3K «Dual Leucine Zipper Bearing Kinase» (DLK) dans les cellules β pancréatiques. Cela est la conséquence de l'absence du répresseur transcriptionnel «Repressor Element 1 Silencing Transcription». Nous montrons également que DLK régule l'activation de JNK et qu'il s'avère nécessaire pour la fonction et la survie de la cellule β pancréatique par un mécanisme impliquant le facteur de transcription PDX-1. L'invalidation de l'expression de DLK diminue l'expression de l'insuline et potentialise l'apoptose induite par des cytokines proinflammatoires. A l'inverse, la surexpression de DLK augmente l'expression et la sécrétion d'insuline induites par le glucose. Par conséquent des niveaux d'expression appropriés de DLK sont déterminants pour la fonction et la survie de la cellule β pancréatique. L'obésité et la grossesse sont caractérisées par une hyperinsulinémie qui résulte d'une augmentation de la production et de la sécrétion de l'insuline. L'expression de DLK est augmentée dans des îlots de rattes gestantes et des souris obèses comparés à leurs contrôles respectifs. A l'inverse, dans des sujets diabétiques, l'expression de DLK est diminuée. Ensemble ces résultats montrent l'importance de DLK dans l'adaptation des îlots par un mécanisme qui pourrait impliquer la voie de signalisation de JNK. Des défauts dans cette voie régulée par DLK pourraient contribuer au dysfonctionnement et la mort de la cellule β pancréatique et par conséquent au développement du diabète. L'étude détaillée du mécanisme par lequel DLK active la voie de signalisation JNK et régule la fonction de la cellule β pancréatique pourrait ouvrir la voie des nouvelles thérapies ciblant l'amélioration de la fonction de la cellule β dans le diabète. - Pancreatic β-cells are evidently plastic in their ability to regulate insulin secretion. The quantity of insulin released by these cells varies according to the stimulus, and the prevailing glucose concentration, β-cell function is pivotal in glucose homeostasis, as their dysfunction, and death can lead to development of type 1 and type 2 diabetes. There are numerous reports so far underlying the role of inflammation in dysfunction, and destruction of β-cells, in both type 1 and type 2 diabetes. Chronic excess of pro¬inflammatory cytokines promotes a β-cell decline, via induction of the c-Jun N-terminal Kinase (JNK) pathway. The activation of the JNK pathway is organized by a scaffold protein-mediated module in which, a three-step phosphorylation cascade occurs. The latter includes, Mitogen activated protein kinase kinase kinase (MAP3K), MAP2K and JNK. In this thesis, we unveil that the MAP3K Dual Leucine Zipper Bearing Kinase (DLK) is selectively, and highly expressed in pancreatic β-cells, as the result from the absence of the transcriptional repressor named, Repressor Element 1 Silencing Transcription (REST). We show that DLK regulates activation of JNK, and is required for β-cell function and survival by modulating the PDX-1 transcription factor. Silencing of DLK expression diminishes insulin expression, and potentiated cytokine-mediated apoptosis. Conversely, overexpression of DLK increased insulin expression, and glucose-induced insulin secretion. Therefore, an appropriate level of DLK is critical for β-cell function and survival. Obesity and pregnancy are characterized by hyperinsulinemia resulting from an increased production and secretion of insulin. In isolated islets of pregnant rats, and obese mice, the expression of DLK was elevated when compared to their respective controls. However, decreased expression of DLK was observed in islets of individuals with diabetes. Taken together, we highlight the importance of DLK in islet adaptation, and describe a mechanism that may involve the JNK signaling. Deficiency in the JNK pathway regulated by DLK may contribute to β-cell failure and death, and thereby development of diabetes. Unraveling the mechanism whereby DLK activates the JNK pathway, and β-cell function, may pave the way for the design of novel therapies, aiming to improve β-cell function and survival in diabetes in general.
Resumo:
Sepsis is among the leading causes of death worldwide and its incidence is increasing. Defined as the host response to infection, sepsis is a clinical syndrome considered to be the expression of a dysregulated immune reaction induced by danger signals that may lead to organ failure and death. Remarkable progresses have been made in our understanding of the molecular basis of host defenses in recent years. The host defense response is initiated by innate immune sensors of danger signals designated under the collective name of pattern-recognition receptors. Members of the family of microbial sensors include the complement system, the Toll-like receptors, the nucleotide-binding oligomerization domainlike receptors, the RIG-I-like helicases and the C-type lectin receptors. Ligand-activated pattern-recognition receptors kick off a cascade of intracellular events resulting in the expression of co-stimulatory molecules and release of effector molecules playing a fundamental role in the initiation of the innate and adaptive immune responses. Fine tuning of proinflammatory and anti-inflammatory reactions is critical for keeping the innate immune response in check. Overwhelming or dysregulated responses induced by infectious stimuli may have dramatic consequences for the host as shown by the profound derangements observed in sepsis. Unfortunately, translational research approaches aimed at the development of therapies targeting newly identified innate immune pathways have not held their promises. Indeed, all recent clinical investigations of adjunctive anti-sepsis treatments had little, if any, impact on morbidity and all-cause mortality of sepsis. Dissecting the mechanisms underlying the transition from infection to sepsis is essential for solving the sepsis enigma. Important components of the puzzle have already been identified, but the hunt must go on in the laboratory and at the bedside.
Resumo:
Recurrent chromosomal translocations associated to peripheral T-cell lymphomas (PTCL) are rare. Here, we report a case of PTCL, not otherwise specified (NOS) with the karyotype 46,Y,add(X)(p22),t(6;14)(p25;q11) and FISH-proved breakpoints in the IRF4 and TCRAD loci, leading to juxtaposition of both genes. A 64-year-old male patient presented with mild cytopenias and massive splenomegaly. Splenectomy showed diffuse red pulp involvement by a pleomorphic medium- to large-cell T-cell lymphoma with a CD2+ CD3+ CD5- CD7- CD4+ CD8+/- CD30- TCRbeta-F1+ immunophenotype, an activated cytotoxic profile, and strong MUM1 expression. The clinical course was marked by disease progression in the bone marrow under treatment and death at 4 months. In contrast with two t(6;14)(p25;q11.2)-positive lymphomas previously reported to be cytotoxic PTCL, NOS with bone marrow and skin involvement, this case was manifested by massive splenomegaly, expanding the clinical spectrum of PTCLs harboring t(6;14)(p25;q11.2) and supporting consideration of this translocation as a marker of biological aggressiveness.
Resumo:
Background: Hypotension, a common intra-operative incident, bears an important potential for morbidity. It is most often manageable and sometimes preventable, which renders its study important. Therefore, we aimed at examining hospital variations in the occurrence of intraoperative hypotension and its predictors. As secondary endpoints, we determined to what extent hypotension relates to the risk of postoperative incidents and death. Methods: We used the Anaesthesia Databank Switzerland, built on routinely and prospectively collected data on all anaesthesias in 21 hospitals. The three outcomes were assessed using multi-level logistic regression models. Results: Among 147573 anaesthesia, hypotension ranged from 0.6 to 5.2% in participating hospitals, and from 0.3 up to 12% in different surgical specialties. Most (73.4%) were minor single events. Age, ASA status, combined general and regional anaesthesia techniques, duration of surgery, and hospitalization were significantly associated to hypotension. Although significantly associated, the emergency status of the surgery had a weaker effect. Hospitals' Odds Ratios for hypotension varied between 0.12 to 2.50 (p ≤0.001) with respect to the mean prevalence of 3.1%, even after adjusting for patient and anaesthesia factors, and for type of surgery. At least one postoperative incident occurred in 9.7% of the interventions, including 0.03% deaths. Intra-operative hypotension was associated with higher risk of post-operative incidents and death. Conclusions: Wide variations in the occurrence of hypotension amongst hospitals remain after adjustment for risk factors. Although differential reporting from hospitals may exist, variations in anesthesia techniques and blood pressure maintenance could have also contributed. Intra-operative hypotension is associated with morbidities and sometimes death, and constant vigilance must thus be advocated.
Resumo:
We found that lumbar spine texture analysis using trabecular bone score (TBS) is a risk factor for MOF and a risk factor for death in a retrospective cohort study from a large clinical registry for the province of Manitoba, Canada. INTRODUCTION: FRAX® estimates the 10-year probability of major osteoporotic fracture (MOF) using clinical risk factors and femoral neck bone mineral density (BMD). Trabecular bone score (TBS), derived from texture in the spine dual X-ray absorptiometry (DXA) image, is related to bone microarchitecture and fracture risk independently of BMD. Our objective was to determine whether TBS provides information on MOF probability beyond that provided by the FRAX variables. METHODS: We included 33,352 women aged 40-100 years (mean 63 years) with baseline DXA measurements of lumbar spine TBS and femoral neck BMD. The association between TBS, the FRAX variables, and the risk of MOF or death was examined using an extension of the Poisson regression model. RESULTS: During the mean of 4.7 years, 1,754 women died and 1,872 sustained one or more MOF. For each standard deviation reduction in TBS, there was a 36 % increase in MOF risk (HR 1.36, 95 % CI 1.30-1.42, p < 0.001) and a 32 % increase in death (HR 1.32, 95 % CI 1.26-1.39, p < 0.001). When adjusted for significant clinical risk factors and femoral neck BMD, lumbar spine TBS was still a significant predictor of MOF (HR 1.18, 95 % CI 1.12-1.23) and death (HR 1.20, 95 % CI 1.14-1.26). Models for estimating MOF probability, accounting for competing mortality, showed that low TBS (10th percentile) increased risk by 1.5-1.6-fold compared with high TBS (90th percentile) across a broad range of ages and femoral neck T-scores. CONCLUSIONS: Lumbar spine TBS is able to predict incident MOF independent of FRAX clinical risk factors and femoral neck BMD even after accounting for the increased death hazard.
Resumo:
Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.
Resumo:
Background: Transplantation improves quality of life (kidney transplantation), and saves lives (heart, lung or liver transplantation), but few qualitative studies have explored existential questionings before transplantation. Methods: In this phenomenological qualitative study, patients registered for kidney (n¼30), liver (n¼11), lung (n¼15), or heart (n¼15) transplantation participated in a semi-structured interview. Findings: The following aspects were discussed: The dilemma of choice, the evaluation process, the endorsement of the ''good candidate's role'', the modification of objects, time and space perception, the co-existence of life and death, and the challenge of the body integrity and of the person's identity. Transplantation generates paradoxical situations, and challenges the person's life values. Discussion: Anxiety and distress may arise with awareness of existential questionings and the co-existence different worlds' life values. Transplantation further generates a broader societal and ethical debate as how to accompany existential questionings in a pragmatic medical environment.
Resumo:
OBJECT: Cerebrovascular pressure reactivity is the ability of cerebral vessels to respond to changes in transmural pressure. A cerebrovascular pressure reactivity index (PRx) can be determined as the moving correlation coefficient between mean intracranial pressure (ICP) and mean arterial blood pressure. METHODS: The authors analyzed a database consisting of 398 patients with head injuries who underwent continuous monitoring of cerebrovascular pressure reactivity. In 298 patients, the PRx was compared with a transcranial Doppler ultrasonography assessment of cerebrovascular autoregulation (the mean index [Mx]), in 17 patients with the PET-assessed static rate of autoregulation, and in 22 patients with the cerebral metabolic rate for O(2). Patient outcome was assessed 6 months after injury. RESULTS: There was a positive and significant association between the PRx and Mx (R(2) = 0.36, p < 0.001) and with the static rate of autoregulation (R(2) = 0.31, p = 0.02). A PRx > 0.35 was associated with a high mortality rate (> 50%). The PRx showed significant deterioration in refractory intracranial hypertension, was correlated with outcome, and was able to differentiate patients with good outcome, moderate disability, severe disability, and death. The graph of PRx compared with cerebral perfusion pressure (CPP) indicated a U-shaped curve, suggesting that too low and too high CPP was associated with a disturbance in pressure reactivity. Such an optimal CPP was confirmed in individual cases and a greater difference between current and optimal CPP was associated with worse outcome (for patients who, on average, were treated below optimal CPP [R(2) = 0.53, p < 0.001] and for patients whose mean CPP was above optimal CPP [R(2) = -0.40, p < 0.05]). Following decompressive craniectomy, pressure reactivity initially worsened (median -0.03 [interquartile range -0.13 to 0.06] to 0.14 [interquartile range 0.12-0.22]; p < 0.01) and improved in the later postoperative course. After therapeutic hypothermia, in 17 (70.8%) of 24 patients in whom rewarming exceeded the brain temperature threshold of 37 degrees C, ICP remained stable, but the average PRx increased to 0.32 (p < 0.0001), indicating significant derangement in cerebrovascular reactivity. CONCLUSIONS: The PRx is a secondary index derived from changes in ICP and arterial blood pressure and can be used as a surrogate marker of cerebrovascular impairment. In view of an autoregulation-guided CPP therapy, a continuous determination of a PRx is feasible, but its value has to be evaluated in a prospective controlled trial.
Resumo:
Introduction : Bacteremia are among the leading forms of severe infections requiring ICU management, and have been reported to be associated with important morbidity and mortality. Bloodstream infection (BSI) can be classified as hospital-acquired (HA), healthcare-associated (HCA) and community-acquired (CA). Each type has its own characteristics and outcome. Methods : We analyzed all consecutive episodes of bacteremia occurring in patients hospitalized in our mixed 32-bed ICU over a 12 month period (01.10.2009-30.09.2010). HA BSI were prospectively included in a multicenter study (EUROBACT). We adapted the case report form to analyze retrospectively all other cases of BSI. Chi-square tests were used for the categorical variables and ANOVA tests for the continuous variables. Results : Bacteremia occurred in 103 patients (120 bacteria) for an incidence-density of 49.3 episodes/1000 admissions. Among HA episodes, about one quarter of episodes was related to vascular accesses, including two thirds acquired outside of the ICU. Concerning HCA BSI, two-thirds originated from the urinary tract. In contrast, a respiratory origin was found in one third of CA episodes. Multiresistant microorganisms were more frequent in HA and HCA BSI. The overall mortality was 32%, as compared to 7.9% and 13.6% for the overall ICU and hospital mortality of other ICU patients over the same period, respectively. In a multivariate model, age (1.06 [1.02-1.11]), septic shock (3.11 [1.16-8.33]) and renal remplacement (7.81 [1.50, 14.93]) were significantly associated with a fatal outcome. Conclusion : Two-thirds of bacteremia documented among ICU patients were nosocomial and in contrast to those community-acquired, Gram-negatives represented the majority of them. However, CA bacteremia were associated with a higher rate of septic shock and death. The microbiological characteristics of HCA episodes were more similar to those HA, that is why it is important to individualize this category in order to adapt the antibiotics.
Resumo:
PURPOSE: Studies of diffuse large B-cell lymphoma (DLBCL) are typically evaluated by using a time-to-event approach with relapse, re-treatment, and death commonly used as the events. We evaluated the timing and type of events in newly diagnosed DLBCL and compared patient outcome with reference population data. PATIENTS AND METHODS: Patients with newly diagnosed DLBCL treated with immunochemotherapy were prospectively enrolled onto the University of Iowa/Mayo Clinic Specialized Program of Research Excellence Molecular Epidemiology Resource (MER) and the North Central Cancer Treatment Group NCCTG-N0489 clinical trial from 2002 to 2009. Patient outcomes were evaluated at diagnosis and in the subsets of patients achieving event-free status at 12 months (EFS12) and 24 months (EFS24) from diagnosis. Overall survival was compared with age- and sex-matched population data. Results were replicated in an external validation cohort from the Groupe d'Etude des Lymphomes de l'Adulte (GELA) Lymphome Non Hodgkinien 2003 (LNH2003) program and a registry based in Lyon, France. RESULTS: In all, 767 patients with newly diagnosed DLBCL who had a median age of 63 years were enrolled onto the MER and NCCTG studies. At a median follow-up of 60 months (range, 8 to 116 months), 299 patients had an event and 210 patients had died. Patients achieving EFS24 had an overall survival equivalent to that of the age- and sex-matched general population (standardized mortality ratio [SMR], 1.18; P = .25). This result was confirmed in 820 patients from the GELA study and registry in Lyon (SMR, 1.09; P = .71). Simulation studies showed that EFS24 has comparable power to continuous EFS when evaluating clinical trials in DLBCL. CONCLUSION: Patients with DLBCL who achieve EFS24 have a subsequent overall survival equivalent to that of the age- and sex-matched general population. EFS24 will be useful in patient counseling and should be considered as an end point for future studies of newly diagnosed DLBCL.
Resumo:
BACKGROUND: From most recent available data, we projected cancer mortality statistics for 2014, for the European Union (EU) and its six more populous countries. Specific attention was given to pancreatic cancer, the only major neoplasm showing unfavorable trends in both sexes. PATIENTS AND METHODS: Population and death certification data from stomach, colorectum, pancreas, lung, breast, uterus, prostate, leukemias and total cancers were obtained from the World Health Organisation database and Eurostat. Figures were derived for the EU, France, Germany, Italy, Poland, Spain and the UK. Projected 2014 numbers of deaths by age group were obtained by linear regression on estimated numbers of deaths over the most recent time period identified by a joinpoint regression model. RESULTS: In the EU in 2014, 1,323,600 deaths from cancer are predicted (742,500 men and 581,100 women), corresponding to standardized death rates of 138.1/100,000 men and 84.7/100,000 women, falling by 7% and 5%, respectively, since 2009. In men, predicted rates for the three major cancers (lung, colorectum and prostate cancer) are lower than in 2009, falling by 8%, 4% and 10%, respectively. In women, breast and colorectal cancers had favorable trends (-9% and -7%), but female lung cancer rates are predicted to rise 8%. Pancreatic cancer is the only neoplasm with a negative outlook in both sexes. Only in the young (25-49 years), EU trends become more favorable in men, while women keep registering slight predicted rises. CONCLUSIONS: Cancer mortality predictions for 2014 confirm the overall favorable cancer mortality trend in the EU, translating to an overall 26% fall in men since its peak in 1988, and 20% in women, and the avoidance of over 250,000 deaths in 2014 compared with the peak rate. Notable exceptions are female lung cancer and pancreatic cancer in both sexes.
Resumo:
Members of the tumor necrosis factor receptor (TNFR) superfamily have an important role in the induction of cellular signals resulting in cell growth, differentiation and death. TNFR-1 recruits and assembles a signaling complex containing a number of death domain (DD)-containing proteins, including the adaptor protein TRADD and the serine/threonine kinase RIP, which mediates TNF-induced NF-kappa B activation. RIP also recruits caspase-2 to the TNFR-1 signaling complex via the adaptor protein RAIDD, which contains a DD and a caspase-recruiting domain (CARD). Here, we have identified a RIP-like kinase, termed CARDIAK (for CARD-containing interleukin (IL)-1 beta converting enzyme (ICE) associated kinase), which contains a serine/threonine kinase domain and a carboxy-terminal CARD. Overexpression of CARDIAK induced the activation of both NF-kappa B and Jun N-terminal kinase (JNK). CARDIAK interacted with the TNFR-associated factors TRAF-1 and TRAF-2, and a dominant-negative form of TRAF-2 inhibited CARDIAK-induced NF-kappa B activation. Interestingly, CARDIAK specifically interacted with the CARD of caspase-1 (previously known as ICE), and this interaction correlated with the processing of pro-caspase-1 and the formation of the active p20 subunit of caspase-1. Together, these data suggest that CARDIAK may be involved in NF-kappa B/JNK signaling and in the generation of the proinflammatory cytokine IL-1 beta through activation of caspase-1.
Resumo:
It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.
Resumo:
Viral haemorrhagic fevers (VHF) caused by arenaviruses are among the most devastating emerging human diseases. The most important pathogen among the arenaviruses is Lassa virus (LASV), the causative agent of Lassa fever that is endemic to West Africa. On the South American continent, the New World arenavirus Junin virus (JUNV), Machupo (MACV), Guanarito (GTOV), and Sabia virus (SABV) have emerged as causative agents of severe VHFs. Clinical and experimental studies on arenavirus VHF have revealed a crucial role of the endothelium in their pathogenesis. However, in contrast to other VHFs, haemorrhages are not a salient feature of Lassa fever and fatal cases do not show overt destruction of vascular tissue. The functional alteration of the vascular endothelium that precede shock and death in fatal Lassa fever may be due to more subtle direct or indirect effects of the virus on endothelial cells. Haemorrhagic disease manifestations and vascular involvement are more pronounced in the VHF caused by the South American haemorrhagic fever viruses. Recent studies on JUNV revealed perturbation of specific endothelial cell function, including expression of cell adhesion molecules, coagulation factors, and vasoactive mediators as a consequence of productive viral infection. These studies provided first possible links to some of the vascular abnormalities observed in patients, however, their relevance in vivo remains to be investigated.