157 resultados para hormonal induction
Resumo:
Glioblastomas (GBMs) are the most frequent and malignant brain tumors in adults. Glucocorticoids (GCs) are routinely used in the treatment of GBMs for their capacity to reduce the tumor-associated edema. Few in vitro studies have suggested that GCs inhibit the migration and invasion of GBM cells through the induction of MAPK phosphatase 1 (MKP-1). Macrophage migration inhibitory factor (MIF), an endogenous GC antagonist is up-regulated in GBMs. Recently, MIF has been involved in tumor growth and migration/invasion and specific MIF inhibitors have been developed on their capacity to block its enzymatic tautomerase activity site. In this study, we characterized several glioma cell lines for their MIF production. U373 MG cells were selected for their very low endogenous levels of MIF. We showed that dexamethasone inhibits the migration and invasion of U373 MG cells, through a glucocorticoid receptor (GR)- dependent inhibition of the ERK1/2 MAPK pathway. Oppositely, we found that exogenous MIF increases U373 MG migration and invasion through the stimulation of the ERK1/2 MAP kinase pathway and that this activation is CD74 independent. Finally, we used the Hs 683 glioma cells that are resistant to GCs and produce high levels of endogenous MIF, and showed that the specific MIF inhibitor ISO-1 could restore dexamethasone sensitivity in these cells. Collectively, our results indicate an intricate pathway between MIF expression and GC resistance. They suggest that MIF inhibitors could increase the response of GBMs to corticotherapy.
Resumo:
Expression of AtPHO1;H10, a member of the Arabidopsis (Arabidopsis thaliana) PHO1 gene family, is strongly induced following numerous abiotic and biotic stresses, including wounding, dehydration, cold, salt, and pathogen attack. AtPHO1;H10 expression by wounding was localized to the cells in the close vicinity of the wound site. AtPHO1;H10 expression was increased by application of the jasmonic acid (JA) precursor 12-oxo-phytodienoic acid (OPDA), but not by JA or coronatine. Surprisingly, induction of AtPHO1;H10 by OPDA was dependent on the presence of CORONATINE INSENSITIVE1 (COI1). The induction of AtPHO1;H10 expression by wounding and dehydration was dependent on COI1 and was comparable in both the wild type and the OPDA reductase 3-deficient (opr3) mutant. In contrast, induction of AtPHO1;H10 expression by exogenous abscisic acid (ABA) was independent of the presence of either OPDA or COI1, but was strongly decreased in the ABA-insensitive mutant abi1-1. The involvement of the ABA pathway in regulating AtPHO1;H10 was distinct between wounding and dehydration, with induction of AtPHO1;H10 by wounding being comparable to wild type in the ABA-deficient mutant aba1-3 and abi1-1, whereas a strong reduction in AtPHO1;H10 expression occurred in aba1-3 and abi1-1 following dehydration. Together, these results reveal that OPDA can modulate gene expression via COI1 in a manner distinct from JA, and independently from ABA. Furthermore, the implication of the ABA pathway in coregulating AtPHO1;H10 expression is dependent on the abiotic stress applied, being weak under wounding but strong upon dehydration
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a "death ligand"-a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-kappaB and JNK signalling pathways. To determine the role of TGF-beta-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1-/- MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-kappaB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-kappaB, protected TAK1-/- MEFs against TRAIL killing, suggesting that TAK1 activation of NF-kappaB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-kappaB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1-/- MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1-NF-kappaB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance.
Resumo:
The tubero-infundibular and nigrostriatal DA neurone systems of rats respond to systemic (i.p.) injection of alpha-MSH (2-100 microgram/kg). The response of the tubero-infundibular (arcuate) DA neurones, an increase in cellular fluorescence intensity which can be interpreted as a sign of increased neuronal activity, is essentially the same in males, estrogen-progesterone-pretreated ovariectomized females and hypophysectomized males, whereas the type of response elicited by alpha-MSH in the nigral DA neurones depends upon the hormonal state of the animal. Differences between the two DA neurone groups exist also with regard to the effects of peptide fragments containing the two active sites of the alpha-MSH molecule. Results of lesion experiments in the lower brainstem (area postrema) and of blockade of muscarinic mechanisms by atropine further point to differences in the mechanisms underlying the peptide effects on the two neurone systems. The reaction of the tubero-infundibular DA system (which controls the pars intermedia of the pituitary) can be considered to reflect the activation of a feedback mechanism on MSH secretion, while the functional counterpart of the changes observed in the nigral system remains unknown at the present time.
Resumo:
There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients.
Resumo:
In the 2005-01 trial, we have demonstrated that bortezomib-dexamethasone as induction therapy before autologous stem cell transplantation was superior to vincristine-adriamycin-dexamethasone. We conducted a post-hoc analysis to assess the prognostic impact of initial characteristics as well as response to therapy in patients enrolled in this study. Multivariate analysis showed that ISS stages 2 and 3 and achievement of response less than very good partial response (VGPR) both after induction therapy and after autologous stem cell transplantation were adverse prognostic factors for progression-free survival, the most important one being achievement of response less than VGPR after induction. Progression-free survival was significantly improved with bortezomib-dexamethasone induction therapy in patients with poor-risk cytogenetics and ISS stages 2 and 3 compared with vincristine-adriamycin-dexamethasone. In these 2 groups of patients, achievement of at least VGPR after induction was of major importance. This study is registered with EudraCT (https://eudract.ema.europa.eu; EUDRACT 2005-000537-38) and http://clinicaltrials.gov (NCT00200681).
Resumo:
Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.
Resumo:
Rapid induction of withdrawal by opiate antagonists under anesthesia is an opiate detoxification technique. This technique is useful to reduce intensity and duration of withdrawal. Therefore, this technique represents an alternative strategy in the treatment of opiate addicted patients. This paper attempts to present a brief history of this technique, and a critical review of related issues.
Resumo:
Neonatal treatment of A/J mice with DNP-Ficoll reduced or eliminated indirect anti-DNP PFC normally produced in response to adult challenge with DNP-keyhole limpet hemocyanin. The remaining direct anti-DNP PFC response was of low avidity. Spleen cells from neonatal A/J mice inhibited the in vitro but not the in vivo response of adult spleen cells to DNP-Ficoll.
Resumo:
The role played by autophagy after ischemia/reperfusion (I/R) in the retina remains unknown. Our study investigated whether ischemic injury in the retina, which causes an energy crisis, would induce autophagy. Retinal ischemia was induced by elevation of the intraocular pressure and modulation of autophagic markers was analyzed at the protein levels in an early and late phase of recovery. Following retinal ischemia an increase in LC3BII was first observed in the early phase of recovery but did not stay until the late phase of recovery. Post-ischemic induction of autophagy by intravitreal rapamycin administration did not provide protection against the lesion induced by the ischemic stress. On the contrary, an increase in the number of apoptotic cells was observed following I/R in the rapamycin treated retinas.
Resumo:
The modulation of HLA-DR and HLA-A, -B, and -C by human recombinant immune interferon (IFN-gamma) was studied on 10 malignant glioma cell lines established in our laboratory, on 8 clones or subclones derived from these lines, and on a fetal astrocyte cell line. Comparative studies were performed with recombinant leukocyte interferon (IFN-alpha). The results not only confirmed the selective activity of IFN-gamma on the modulation of HLA-DR expression, as opposed to that of IFN-alpha, but also demonstrated a marked heterogeneity in the response of glioma cell lines and their clones to the two types of IFN tested. For example, all 3 clones of an inducible cell line could be modulated to express HLA-DR, whereas only 2 of 5 clones derived from a noninducible line were modulated. This heterogeneity did not seem to be due to the absence of the receptor for IFN-gamma on the surface of these cells, since almost all of the cell lines or clones tested (17 of 19) responded to IFN-gamma by the induction or enhancement of the expression for either HLA-DR or HLA-A, -B, and -C (or both). The heterogeneity of induction was also demonstrated between clones derived from a glioma line that did not express HLA-DR after IFN-gamma treatment. The production of HLA-DR by one of the clones was abundant enough to be confirmed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.
Resumo:
In order to evaluate the effect of head injury in severely traumatized patients on the response of plasma cortisol, glucagon, insulin, glucose, and FFA as well as urinary N and catecholamines excretions, 36 patients were prospectively studied over 5 consecutive days following injury. They were divided into three groups: group I, severe isolated head injury (n = 14); group II, multiple injury combined with severe head injury (n = 12); group III multiple injury without head injury (n = 10). The results demonstrate similar hormonal and metabolic changes between these three groups of patients, characterized by elevated urinary adrenaline, noradrenaline excretion, increased cortisol, glucagon, insulin plasma levels throughout the study and elevated N urinary excretion with strongly negative N balances during the first 5 days postinjury. A significant correlation was observed between N intake and 5 day cumulated N balance (r = 0.63, p less than 0.001). In addition, N balance was negatively correlated with urinary excretion of adrenaline (r = -0.47, p less than 0.01) and noradrenaline (r = -0.44, p less than 0.05) as well as plasma levels of glucagon (r = -0.44, p less than 0.05). Isolated severe head injury seems to induce a full response in the secretion of the catabolic counterregulatory hormones comparable to that encountered in patients with multiple injury and associated with a marked increase in protein catabolism; additional noncranial major injury does not seem to enhance these responses.
Resumo:
Background: Recent data have suggested that a population of CD4+ CD25high T cells, phenotypically characterized by the expression of CD45RO and CD127, is significantly expanded in stable liver and kidney transplant recipients and represents alloreactive T cells. Induction therapies may have an impact on this alloreactive T cell population. In this study, we prospectively analyzed CD4+ CD25high CD45RO+ CD127high T cells after induction with either thymoglobulin or basiliximab. Patients and methods: A total of twenty-seven kidney transplant recipients were prospectively enrolled; 14 received thymoglobulin induction followed by a 4-day course of steroids with tacrolimus and mycophenolate mofetil («thymo group»), and 13 received basiliximab induction followed by standard triple immunosuppression (tacrolimus, mycophenolate mofetil and prednisone) («BSX group»). Phenotypical analysis by flow cytometry of the expression of CD25, CD45RO and CD127 on peripheral CD4+ T cells was performed at 0, 3 and 6 months after transplantation. Twenty-four healthy subjects (HS) were studied as controls. Results: There were no differences in baseline characteristics between the groups; at 6 months, patient survival (100%), graft survival (100%), serum creatinine (thymo group versus BSX group: 129 versus 125 micromol/l) and acute rejection (2/14 versus 2/13) were not significantly different. Thymo induction produced a prolonged CD4 T cell depletion. As compared to pre-transplantation values, an expansion of the alloreactive T cell population was observed at 3 months in both thymo (mean: from 6.38% to 14.72%) and BSX (mean: from 8.01% to 18.42%) groups. At 6 months, the alloreactive T cell population remained significantly expanded in the thymo group (16.92 ± 2.87%) whereas it tended to decrease in the BSX group (10.22 ± 1.38%). Conclusion: Overall, our results indicate that the expansion of alloreactive T cells occurs rapidly after transplantation in patients receiving either thymo or BSX induction. Whether differences at later timepoints or whether different IS regimens may modify this alloreactive population remains to be studied.