113 resultados para glycosyl phosphatidylinositol anchor (GPI)
Resumo:
BACKGROUND: The mammalian target of rapamycin (mTOR) is frequently activated in colon cancers due to mutations in the phosphatidylinositol 3-kinase (PI3K) pathway. Targeting mTOR with allosteric inhibitors of mTOR such as rapamycin reduces colon cancer progression in several experimental models. Recently, a new class of mTOR inhibitors that act as ATP-competitive inhibitors of mTOR, has been developed. The effectiveness of these drugs in colon cancer cells has however not been fully characterized. METHODS: LS174T, SW480 and DLD-1 colon cancer cell lines were treated with PP242 an ATP-competitive inhibitor of mTOR, NVP-BEZ235, a dual PI3K/mTOR inhibitor or rapamycin. Tumor cell growth, proliferation and survival were assessed by MTS assay, 5-bromo-2'-deoxyuridine (BrDU) incorporation or by quantification of DNA fragmentation respectively. In vivo, the anticancer activity of mTOR inhibitors was evaluated on nude mice bearing colon cancer xenografts. RESULTS: PP242 and NVP-BEZ235 reduced the growth, proliferation and survival of LS174T and DLD-1 colon cancer cells more efficiently than rapamycin. Similarly, PP242 and NVP-BEZ235 also decreased significantly the proliferation and survival of SW480 cells which were resistant to the effects of rapamycin. In vivo, PP242 and NVP-BEZ235 reduced the growth of xenografts generated from LS174T and SW480 cells. Finally, we also observed that the efficacy of ATP-competitive inhibitors of mTOR was enhanced by U0126, a MEK inhibitor. CONCLUSIONS: Taken together, these results show that ATP-competitive inhibitors of mTOR are effective in blocking colon cancer cell growth in vitro and in vivo and thus represent a therapeutic option in colon cancer either alone or in combination with MEK inhibitors.
Resumo:
The Melan-A/MART-1 gene, which is expressed by normal melanocytes as well as by most fresh melanoma samples and melanoma cell lines, codes for Ags recognized by tumor-reactive CTL. HLA-A*0201-restricted Melan-A-specific CTL recognize primarily the Melan-A(27-35) (AAGIGILTV) and the Melan-A(26-35) (EAAGIGILTV) peptides. The sequences of these two peptides are not necessarily optimal as far as binding to HLA-A*0201 is concerned, since both lack one of the dominant anchor amino acid residues (leucine or methionine) at position 2. In this study we introduced single amino acid substitutions in either one of the two natural peptide sequences with the aim of improving peptide binding to HLA-A*0201 and/or recognition by specific CTL. Surprisingly, analogues of the Melan-A(27-35) peptide, which bound more efficiently than the natural nonapeptide to HLA-A*0201, were poorly recognized by tumor-reactive CTL. In contrast, among the Melan-A(26-35) peptide analogues tested, the peptide ELAGIGILTV was not only able to display stable binding to HLA-A2.1 but was also recognized more efficiently than the natural peptide by two short-term cultured tumor-infiltrated lymph node cell cultures as well as by five of five tumor-reactive CTL clones. Moreover, in vitro generation of tumor-reactive CTL by stimulation of PBMC from HLA-A*0201 melanoma patients with this particular peptide analogue was much more efficient than that observed with either one of the two natural peptides. These results suggest that the Melan-A(26-35) peptide analogue ELAGIGILTV may be more immunogenic than the natural peptides in HLA-A*0201 melanoma patients and should thus be considered as a candidate for future peptide-based vaccine trials.
Resumo:
Summary Skin is the essential interface between our body and its environment; not only does it prevent water loss and protect us from external insults it also plays an essential role in the central nervous system acting as a major sense organ primarily for touch and pain. The main cell type present in skin, keratinocyte, undergoes a differentiation process leading to the formation of this protecting barrier. This work is intended to contribute to the understanding of how keratinocyte differentiates and skin functions. To do this, we studied two genetic skin diseases: Erythrokeratodermia variabilis and Mal de Meleda. Our approach was to examine the expression and localization of proteins implicated in these two pathologies in normal and diseased tissues and to determine the influence of mutant proteins at the molecular and cellular levels. Connexins are major components of gap junctions, channels allowing direct communication between cells. Our laboratory has identified mutations in both connexin 30.3 (Cx30.3) and 31 (Cx31) to be causally involved in erythrokeratodermia variabilis (EKV), an autosomal dominant disorder of keratinization. In the first chapter, we show a new mutation of Cx31, L209P-Cx31, in 3 EKV patients, extending the field of EKV-causing mutations although the mechanism by which connexin mutations lead to the disease is unclear. In the second chapter, we studied the effect of F137L-Cx30.3 on expression, trafficking and localization of cotransfected Cx31 and Cx30.3 in connexin-deficient HeLa cells. The F137 amino acid, highly conserved in connexin family, is oriented towards the channel pore and F137L mutation in either Cx30.3 or Cx31 lead to EKV. As two genes can lead to EKV when mutated, our hypothesis was that Cx31 and Cx30.3 might cooperate at a molecular level. We were able to demonstrate a physical interaction between Cx31 and Cx30.3. The presence of F137L-Cx30.3 disturbed the trafficking of both connexins, less connexins were integrated into gap junctions and thus, the coupling between cell was diminished. Connexins formed in the presence of F137L-Cx30.3 are degraded at their exit from the endoplasmic reticulum. In conclusion, our results indicate that the genetic heterogeneity of EKV is due to mutations in two interacting proteins. F137L-Cx30.3 has a dominant negative effect and affects Cx31, disturbing cellular communication in epidermal cells. Mal de Meleda is an autosomal recessive inflammatory and a keratotic palmoplantar skin disorder due to mutations in SLURP1 (secreted LY6/PLAUR-related protein 1). SLURP1 belongs to the LY6/PLAUR family of proteins and has the particularity of being secreted instead of being GPI-anchored. The high degree of structural similarity between SLURP1 and the three fingers motif of snake neurotoxins and LYNX 1-C suggests that this protein could interact with the neuronal acetylcholine receptors. In the third chapter, we show that SLURP1 potentiates responses of the a7 nicotinic acetylcholine receptor (nAchR) to acetylcholine. These results identify SLURP1 as a secreted epidermal neuromodulator that is likely to be essential for palmoplantar skin. In the fourth chapter, we show that SLURP1 is expressed in the granular layer of the epidermis but is absent from skin biopsies of Mal de Meleda patients. SLURP1 is also present in secretions such as sweat, tears or saliva. An in vitro analysis on two mutant of SLURP-I demonstrates that W15R-SLURP1 is absent in cells while G86R-SLURP1 is expressed and secreted, suggesting that SLURP1 can lead to the disease by either an absent or an abnormal protein. Finally, in the fifth chapter, we analyse the expression and biological properties of other LY6/PLAUR members, clustered around SLURP] on chromosome 8. Their GPI-anchored or secreted status were analysed in vitro. SLURP1, LYNX1-A and -B are secreted while LYPDC2 and LYNX 1-C are GPI anchored. Three of these proteins are expressed in the epidermis and in cultured keratinocytes. These results suggest that these LY6/PLAUR members may have an important role in skin homeostasis. Résumé Résumé La peau est la barrière essentielle entre notre corps et l'environnement, nous protégeant des agressions extérieures, de la déshydratation et assurant aussi un rôle dans le système nerveux central en tant qu'organe du toucher et de la douleur. Le principal type de cellules présent dans la peau est le kératinocyte qui suit un processus de différenciation aboutissant à la formation de cette barrière protectrice. Ce travail est destiné à comprendre la différenciation des kératinocytes et le fonctionnement de la peau. Pour cela, nous avons étudié deux maladies génodermatoses : l'Erthrokeratodermia Variabilis (EKV) et le Mal de Meleda. Nous avons examiné l'expression et la localisation des protéines impliquées dans ces deux pathologies dans des tissus normaux et malades puis déterminé l'influence des protéines mutantes aux niveaux moléculaires et cellulaires. Les connexines (Cx) sont les composants majeurs des jonctions communicantes, canaux permettant la communication directe entre les cellules. Notre laboratoire a identifié des mutations dans les Cx30.3 et Cx31 comme responsables de l'EKV, génodermatose de transmission autosomique dominante. Dans le ler chapitre, nous décrivons une nouvelle mutation de Cx31, L209-Cx31, et contribuons à l'établissement du catalogue des mutations de Cx31 entraînant cette maladie. Cependant, le mécanisme par lequel les mutations de Cx31 et C3x0.3 provoquent l'EKV est inconnu. Dans le 2ème chapitre, nous étudions les effets de la mutation F137L-Cx30.3 sur l'expression, le trafic et la localisation des Cx31 et Cx30.3 transfectées dans des cellules HeLa, déficientes en connexines. Comme deux gènes peuvent causer une EKV quand ils sont mutés, notre hypothèse était que Cx31 et Cx30.3 pourraient coopérer au niveau moléculaire. Nous avons montré l'existence d'une interaction physique entre ces deux connexines. La présence de la mutation F137L-Cx30.3 perturbe le trafic des deux connexines, moins de connexines sont intégrées dans les jonctions communicantes et donc le couplage entre les cellules est diminué. Les connexons formés en présence de cette mutation sont dégradés à leur sortie du réticulum endoplasmique. En conclusion, nos résultats indiquent que l'hétérogénéité génétique de EKV est due à des mutations dans deux protéines qui interagissent. F137L-Cx30.3 a un effet dominant négatif et affecte Cx31, perturbant la communication entre les cellules épidermiques. Le Mal de Meleda est une maladie récessive de la peau palmoplantaire due à des mutations dans SLURP1. SLURP1 appartient à la famille des protéines contenant un domaine LY6/PLAUR et a la particularité d'être sécrétée. La grande homologie de structure existant entre SLURP1, les neurotoxines de serpent et LYNX1-C suggère que la protéine pourrait interagir avec des récepteurs à acétylcholine (Ach). Dans le 3ème chapitre, nous montrons que SLURP1 module la réponse à l'Ach du récepteur nicotinique α7. Ces résultats identifient SLURP1 comme un neuromodulateur épidermique sécrété, probablement essentiel pour la peau palmoplantaire. Dans le 4ème chapitre, nous montrons que SLURP1 est exprimé dans la couche granuleuse de l'épiderme et qu'il est absent des biopsies des patients. SLURP1 a aussi été détecté dans des sécrétions telles que la sueur, les lamies et la salive. Une analyse in vitro de deux mutants de SLURP1 a montré que W15R-SLURP1 est absent des cellules tandis que G86R-SLURP1 est exprimé et sécrété, suggérant qu'une absence ou une anomalie de SLURP1 peuvent causer la maladie. Finalement, dans le 5ème chapitre, nous analysons l'expression et les propriétés biologiques d'autres membres de la famille LY6/PLAUR localisés autour de SLURP1 sur le chromosome 8. Leur statut de protéines sécrétées ou liées à la membrane par une ancre GPI est analysé in vitro. SLURP1, LYNXI-A et -B sont sécrétées alors que LYPDC2 et LYNX1-C sont liés à la membrane. Trois de ces protéines sont exprimées dans l'épiderme et dans des kératinocytes cultivés. Ces résultats suggèrent que la famille LY6/PLAUR pourrait avoir un rôle important dans l'homéostasie de la peau.
Resumo:
Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response.
Resumo:
BACKGROUND: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. OBJECTIVES: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. RESULTS: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. CONCLUSIONS: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner.
Resumo:
Desmosomes are intercellular adhesive complexes that anchor the intermediate filament cytoskeleton to the cell membrane in epithelia and cardiac muscle cells. The desmosomal component desmoplakin plays a key role in tethering various intermediate filament networks through its C-terminal plakin repeat domain. To gain better insight into the cytoskeletal organization of cardiomyocytes, we investigated the association of desmoplakin with desmin by cell transfection, yeast two-hybrid, and/or in vitro binding assays. The results indicate that the association of desmoplakin with desmin depends on sequences within the linker region and C-terminal extremity of desmoplakin, where the B and C subdomains contribute to efficient binding; a potentially phosphorylatable serine residue in the C-terminal extremity of desmoplakin affects its association with desmin; the interaction of desmoplakin with non-filamentous desmin requires sequences contained within the desmin C-terminal rod portion and tail domain in yeast, whereas in in vitro binding studies the desmin tail is dispensable for association; and mutations in either the C-terminus of desmoplakin or the desmin tail linked to inherited cardiomyopathy seem to impair desmoplakindesmin interaction. These studies increase our understanding of desmoplakin-intermediate filament interactions, which are important for maintenance of cytoarchitecture in cardiomyocytes, and give new insights into the molecular basis of desmoplakin- and desmin-related human diseases.
Resumo:
Three phosphatidylinositol-3-kinase-related protein kinases implement cellular responses to DNA damage. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated respond primarily to DNA double-strand breaks (DSBs). Ataxia-telangiectasia and RAD3-related (ATR) signals the accumulation of replication protein A (RPA)-covered single-stranded DNA (ssDNA), which is caused by replication obstacles. Stalled replication intermediates can further degenerate and yield replication-associated DSBs. In this paper, we show that the juxtaposition of a double-stranded DNA end and a short ssDNA gap triggered robust activation of endogenous ATR and Chk1 in human cell-free extracts. This DNA damage signal depended on DNA-PKcs and ATR, which congregated onto gapped linear duplex DNA. DNA-PKcs primed ATR/Chk1 activation through DNA structure-specific phosphorylation of RPA32 and TopBP1. The synergistic activation of DNA-PKcs and ATR suggests that the two kinases combine to mount a prompt and specific response to replication-born DSBs.
Resumo:
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.
Resumo:
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2) and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.
Resumo:
Apoptosis of pancreatic beta cells is implicated in the onset of type 1 and type 2 diabetes. Consequently, strategies aimed at increasing the resistance of beta cells toward apoptosis could be beneficial in the treatment of diabetes. RasGAP, a regulator of Ras and Rho GTPases, is an atypical caspase substrate, since it inhibits, rather than favors, apoptosis when it is partially cleaved by caspase-3 at position 455. The antiapoptotic signal generated by the partial processing of RasGAP is mediated by the N-terminal fragment (fragment N) in a Ras-phosphatidylinositol 3-kinase-Akt-dependent, but NF-kappaB-independent, manner. Further cleavage of fragment N at position 157 abrogates its antiapoptotic properties. Here we demonstrate that an uncleavable form of fragment N activates Akt, represses NF-kappaB activity, and protects the conditionally immortalized pancreatic insulinoma betaTC-tet cell line against various insults, including exposure to genotoxins, trophic support withdrawal, and incubation with inflammatory cytokines. Fragment N also induced Akt activity and protection against cytokine-induced apoptosis in primary pancreatic islet cells. Fragment N did not alter insulin cell content and insulin secretion in response to glucose. These data indicate that fragment N protects beta cells without affecting their function. The pathways regulated by fragment N are therefore promising targets for antidiabetogenic therapy.
Resumo:
PURPOSE: The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in medulloblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in medulloblastoma. EXPERIMENTAL DESIGN: The expression pattern and functions of class I(A) PI3K isoforms were investigated in medulloblastoma tumour samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha, p110beta, or p110delta by means of RNA interference or inhibition with isoform-specific PI3K inhibitors. RESULTS: Overexpression of the catalytic p110alpha isoform was detected in a panel of primary medulloblastoma samples and cell lines compared with normal brain tissue. Down-regulation of p110alpha expression by RNA interference impaired the growth of medulloblastoma cells, induced apoptosis, and led to decreased migratory capacity of the cells. This effect was selective, because RNA interference targeting of p110beta or p110delta did not result in a comparable impairment of DAOY cell survival. Isoform-specific p110alpha inhibitors also impaired medulloblastoma cell proliferation and sensitized the cells to chemotherapy. Medulloblastoma cells treated with p110alpha inhibitors further displayed reduced activation of Akt and the ribosomal protein S6 kinase in response to stimulation with hepatocyte growth factor and insulin-like growth factor-I. CONCLUSIONS: Together, our data reveal a novel function of p110alpha in medulloblastoma growth and survival.
Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging.
Resumo:
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
Resumo:
The development of cancer is a major problem in immunosuppressed patients, particularly after solid organ transplantation. We have recently shown that calcineurin inhibitors (CNI) used to treat transplant patients may play a critical role in the rapid progression of renal cancer. To examine the intracellular signaling events for CNI-mediated direct tumorigenic pathway(s), we studied the effect of CNI on the activation of proto-oncogenic Ras in human normal renal epithelial cells (REC) and renal cancer cells (786-0 and Caki-1). We found that CNI treatment significantly increased the level of activated GTP-bound form of Ras in these cells. In addition, CNI induced the association of Ras with one of its effector molecules, Raf, but not with Rho and phosphatidylinositol 3-kinase; CNI treatment also promoted the phosphorylation of the Raf kinase inhibitory protein and the downregulation of carabin, all of which may lead to the activation of the Ras-Raf pathway. Blockade of this pathway through either pharmacologic inhibitors or gene-specific small interfering RNA significantly inhibited CNI-mediated augmented proliferation of renal cancer cells. Finally, it was observed that CNI treatment increased the growth of human renal tumors in vivo, and the Ras-Raf pathway is significantly activated in the tumor tissues of CNI-treated mice. Together, targeting the Ras-Raf pathway may prevent the development/progression of renal cancer in CNI-treated patients.
Resumo:
In hair follicles, dermal papilla (DP) and dermal sheath (DS) cells exhibit striking levels of plasticity, as each can regenerate both cell types. Here, we show that thrombin induces a phosphoinositide 3-kinase (PI3K)-Akt pathway-dependent acquisition of DS-like properties by DP cells in vitro, involving increased proliferation rate, acquisition of ;myofibroblastic' contractile properties and a decreased capacity to sustain growth and survival of keratinocytes. The thrombin inhibitor protease nexin 1 [PN-1, also known as SERPINE2) regulates all those effects in vitro. Accordingly, the PI3K-Akt pathway is constitutively activated and expression of myofibroblastic marker smooth-muscle actin is enhanced in vivo in hair follicle dermal cells from PN-1(-/-) mice. Furthermore, physiological PN-1 disappearance and upregulation of the thrombin receptor PAR-1 (also known as F2R) during follicular regression in wild-type mice also correlate with such changes in DP cell characteristics. Our results indicate that control of thrombin signaling interferes with hair follicle dermal cells plasticity to regulate their function.