82 resultados para fatty streaks
Resumo:
Chronic inflammation and fatty acid deficiency, in particular in docosahexaenoic acid (DHA, C22:6-n3), occurring in cystic fibrosis patients, are two convincing arguments urging the use of polyunsaturated fatty acids (PUFA) omega-3 in this population. PUFA omega-3 oral dietary intake position in the cystic fibrosis treatment is however not clear despite many years of clinical research. This review article sets out the reasons that conduct nutritionists to try this approach and reviews the results published until nowadays.
Resumo:
ABSTRACT: BACKGROUND: Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice. METHODS: A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARgammaL2/L2 mice) was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor gamma in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF) and, subsequently, mice were randomly assigned (day 0) to one of the following groups: (i) mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii) mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii) control mice fed cHF diet with 15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F); and (iv) mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42. RESULTS: Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice. CONCLUSION: Dietary LC n-3 PUFA could reduce both hypertrophy and hyperplasia of fat cells in vivo. Results are in agreement with the involvement of fat cell turnover in control of adiposity.
Resumo:
This study explores the potential use of stable carbon isotope ratios (delta C-13) of single fatty acids (FA) as tracers for the transformation of FA from diet to milk, with focus on the metabolic origin of c9,t11-18:2. For this purpose, dairy cows were fed diets based exclusively on C-3 and C-4 plants. The FA in milk and feed were fractionated by silver-ion thin-layer chromatography and analyzed for their delta C-13 values. Mean delta C-13 values of FA from C-3 milk were lower compared to those from C-4 milk (-30.1aEuro degrees vs. -24.9aEuro degrees, respectively). In both groups the most negative delta C-13 values of all FA analyzed were measured for c9,t11-18:2 (C-3 milk = -37.0 +/- A 2.7aEuro degrees; C-4 milk -31.4 +/- A 1.4aEuro degrees). Compared to the dietary precursors 18:2n-6 and 18:3n-3, no significant C-13-depletion was measured in t11-18:1. This suggests that the delta C-13-change in c9,t11-18:2 did not originate from the microbial biohydrogenation in the rumen, but most probably from endogenous desaturation of t11-18:1. It appears that the natural delta C-13 differences in some dietary FA are at least partly preserved in milk FA. Therefore, carbon isotope analyses of individual FA could be useful for studying metabolic transformation processes in ruminants.
Resumo:
Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans.
Resumo:
The degradation of fatty acids in plants occurs primarily in the peroxisomes through the beta-oxidation cycle. Enzymes that are involved in various aspects of beta-oxidation have been identified recently and shown to act biochemically on a diversity of fatty acids and derivatives. Analysis of several mutants has revealed essential roles for beta-oxidation in the breakdown of reserve triacylglycerols, seed development, seed germination and post-germinative growth before the establishment of photosynthesis. Beta-oxidation has also a considerable importance during the vegetative and reproductive growth phases, and plays a role in plant responses to stress, particularly in the synthesis of jasmonic acid.
Resumo:
Rapeseed (Brassica napus) oils differing in cultivar, sites of growth, and harvest year were characterized by fatty acid concentrations and carbon, hydrogen, and oxygen stable isotope analyses of bulk oils (delta(13)C(bulk), delta(2)H(bulk), delta(18)O(bulk) values) and individual fatty acids (delta(13)C(FA)). The delta(13)C(bulk), delta(2)H(bulk), and delta(18)O(bulk) values were determined by continuous flow combustion and high-temperature conversion elemental analyzer isotope ratio mass spectrometry (EA/IRMS, TC-EA/IRMS). The delta(13)C(FA) values were determined using gas chromatography-combustion isotope ratio mass spectrometry (GC/C/IRMS). For comparison, other C(3) vegetable oils rich in linolenic acid (flax and false flax oils) and rich in linoleic acid (poppy, sunflower, and safflower oils) were submitted to the same chemical and isotopic analyses. The bulk and molecular delta(13)C values were typical for C(3) plants. The delta(13)C value of palmitic acid (delta(13)C(16:0)) and n-3 alpha-linolenic acid (delta(13)C(18:3n-3)) differed (p < 0.001) between rape, flax, and poppy oils. Also within species, significant differences of delta(13)C(FA) were observed (p < 0.01). The hydrogen and oxygen isotope compositions of rape oil differed between cultivars (p < 0.05). Major differences in the individual delta(13)C(FA) values were found. A plant-specific carbon isotope fractionation occurs during the biosynthesis of the fatty acids and particularly during desaturation of C(18) acids in rape and flax. Bulk oil and specific fatty acid stable isotope analysis might be useful in tracing dietary lipids differing in their origin.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. These receptors stimulate transcription after activation by their cognate ligand and binding to the promoter of target genes. In this review, we discuss how fatty acids affect PPAR functions in the cell. We first describe the structural features of the ligand binding domains of PPARs, as defined by crystallographic analyses. We then present the ligand-binding characteristics of each of the three PPARs (alpha, beta/delta, gamma) and relate ligand activation to various cellular processes: (i) fatty acid catabolism and modulation of the inflammatory response for PPARalpha, (ii) embryo implantation, cell proliferation and apoptosis for PPARbeta, and (iii) adipocytic differentiation, monocytic differentiation and cell cycle withdrawal for PPARgamma. Finally, we present possible cross-talk between the PPAR pathway and different endocrine routes within the cell, including the thyroid hormone and retinoid pathways.
Resumo:
Endurance training improves exercise performance and insulin sensitivity, and these effects may be in part mediated by an enhanced fat oxidation. Since n-3 and n-9 unsaturated fatty acids may also increase fat oxidation, we hypothesised that a diet enriched in these fatty acids may enhance the effects of endurance training on exercise performance, insulin sensitivity and fat oxidation. To assess this hypothesis, sixteen normal-weight sedentary male subjects were randomly assigned to an isoenergetic diet enriched with fish and olive oils (unsaturated fatty acid group (UFA): 52 % carbohydrates, 34 % fat (12 % SFA, 12 % MUFA, 5 % PUFA), 14 % protein), or a control diet (control group (CON): 62 % carbohydrates, 24 % fat (12 % SFA, 6 % MUFA, 2 % PUFA), 14 % protein) and underwent a 10 d gradual endurance training protocol. Exercise performance was evaluated by measuring VO2max and the time to exhaustion during a cycling exercise at 80 % VO2max; glucose homeostasis was assessed after ingestion of a test meal. Fat oxidation was assessed by indirect calorimetry at rest and during an exercise at 50 % VO2max. Training significantly increased time to exhaustion, but not VO2max, and lowered incremental insulin area under the curve after the test meal, indicating improved insulin sensitivity. Those effects were, however, of similar magnitude in UFA and CON. Fat oxidation tended to increase in UFA, but not in CON. This difference was, however, not significant. It is concluded that a diet enriched with fish- and olive oil does not substantially enhance the effects of a short-term endurance training protocol in healthy young subjects.
Resumo:
Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.
Resumo:
Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the beta-oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.
Resumo:
Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARgamma and PPARbeta, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARgamma and PPARbeta and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARbeta-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.
Resumo:
RATIONALE: Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. OBJECTIVE: To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. METHODS AND RESULTS: Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. CONCLUSIONS: Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.
Resumo:
Introduction: La prévalence de la «non-alcoholic fatty liver disease (NAFLD)» dans les pays industrialisés augment de manière exponentielle. La NAFLD se développe d'une simple stéatose hépatique jusqu'à l'hépatite, puis à la cirrhose. De plus, la stéatose hépatique est fréquemment accompagnée par une résistance à l'insuline, une des causes principales du diabète. Les lipides intermédiaires, tels que céramides et diacylglycérols, ont été décrits comme induisant la résistance à l'insuline. Cependant, nous avons démontré dans notre modèle de stéatose hépatique, que les souris présentant une invalidation de la protéine «microsomal triglyceride transfer protein» (Mtpp) au niveau hépatique, ne développent pas de résistance à l'insuline. Ceci suggère fortement l'existence d'autres mécanismes susceptibles d'induire la résistance à l'insuline. Résultats: Grâce à une analyse de Microarray, nous avons observé une augmentation de l'expression des gènes «cell-death inducing DFFA-like effector c (CIDEC)», «lipid storage droplet protein 5 (LSDP5)» et «Bernardinelli-Seip congenital lipodystrophy 2 homolog (Seipin)» dans le foie des souris Mttp. Ces gènes ont récemment été identifiés comme des protéines localisées autour des gouttelettes lipidiques. Nous avons également constaté que la souris Mttp développe plutôt une microstéatose (petites gouttelettes lipidiques) qu'une macrostéatose qui est normalement observée chez les patients avec NAFLD. Nous avons étudié l'expression des gènes associés aux gouttelettes lipidiques chez les patients obèses avec stéatose hépatique, avec ou sans résistance à l'insuline. Comparés aux sujets sains sans stéatose hépatique, les patients avec la stéatose ont une expression significativement plus élevée. De manière intéressante, les patients avec résistance à l'insuline ont une diminution de ces expressions. Conclusion : Ces données suggèrent que les gènes des gouttelettes lipidiques sont impliqués dans le développement de la stéatose hépatique chez l'homme et peut-être contribue à la mise en place de la résistance à l'insuline.
Resumo:
BACKGROUND: Data regarding immunomodulatory effects of parenteral n-3 fatty acids in sepsis are conflicting. In this study, the effect of administration of parenteral n-3 fatty acids on markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients was investigated. METHODS: Fifty patients with sepsis were randomized to receive either 2 ml/kg/day of a lipid emulsion containing highly refined fish oil (equivalent to n-3 fatty acids 0.12 mg/kg/day) during 7 days after admission to the intensive care unit or standard treatment. Markers of brain injury and inflammatory mediators were measured on days 1, 2, 3 and 7. Assessment for sepsis-associated delirium was performed daily. The primary outcome was the difference in S-100β from baseline to peak level between both the intervention and the control group, compared by t-test. Changes of all markers over time were explored in both groups, fitting a generalized estimating equations model. RESULTS: Mean difference in change of S-100β from baseline to peak level was 0.34 (95% CI: -0.18-0.85) between the intervention and control group, respectively (P = 0.19). We found no difference in plasma levels of S-100β, neuron-specific enolase, interleukin (IL)-6, IL-8, IL-10, and C-reactive protein between groups over time. Incidence of sepsis-associated delirium was 75% in the intervention and 71% in the control groups (risk difference 4%, 95% CI -24-31%, P = 0.796). CONCLUSION: Administration of n-3 fatty acids did not affect markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients.