260 resultados para culture cellulaire
Resumo:
Background: Over the last two decades, mortality from coronary heart disease (CHD) and cerebrovascular disease (CVD) declined by about 30% in the European Union (EU). Design: We analyzed trends in CHD (X ICD codes: I20-I25) and CVD (X ICD codes: I60-I69) mortality in young adults (age 35-44 years) in the EU as a whole and in 12 selected European countries, over the period 1980-2007. Methods: Data were derived from the World Health Organization mortality database. With joinpoint regression analysis, we identified significant changes in trends and estimated average annual percent changes (AAPC). Results: CHD mortality rates at ages 35-44 years have decreased in both sexes since the 1980s for most countries, except for Russia (130/100,000 men and 24/100,000 women, in 2005-7). The lowest rates (around 9/100,000 men, 2/100,000 women) were in France, Italy and Sweden. In men, the steepest declines in mortality were in the Czech Republic (AAPC = -6.1%), the Netherlands (-5.2%), Poland (-4.5%), and England and Wales (-4.5%). Patterns were similar in women, though with appreciably lower rates. The AAPC in the EU was -3.3% for men (rate = 16.6/100,000 in 2005-7) and -2.1% for women (rate = 3.5/100,000). For CVD, Russian rates in 2005-7 were 40/100,000 men and 16/100,000 women, 5 to 10-fold higher than in most western European countries. The steepest declines were in the Czech Republic and Italy for men, in Sweden and the Czech Republic for women. The AAPC in the EU was -2.5% in both sexes, with steeper declines after the mid-late 1990s (rates = 6.4/100,000 men and 4.3/100,000 women in 2005-7). Conclusions: CHD and CVD mortality steadily declined in Europe, except in Russia, whose rates were 10 to 15-fold higher than those of France, Italy or Sweden. Hungary and Poland, and also Scotland, where CHD trends were less favourable than in other western European countries, also emerge as priorities for preventive interventions.
Resumo:
RÉSUMÉ Le but d'un traitement antimicrobien est d'éradiquer une infection bactérienne. Cependant, il est souvent difficile d'en évaluer rapidement l'efficacité en utilisant les techniques standard. L'estimation de la viabilité bactérienne par marqueurs moléculaires permettrait d'accélérer le processus. Ce travail étudie donc la possibilité d'utiliser le RNA ribosomal (rRNA) à cet effet. Des cultures de Streptococcus gordonii sensibles (parent Wt) et tolérants (mutant Tol 1) à l'action bactéricide de la pénicilline ont été exposées à différents antibiotiques. La survie bactérienne au cours du temps a été déterminée en comparant deux méthodes. La méthode de référence par compte viable a été comparée à une méthode moléculaire consistant à amplifier par PCR quantitative en temps réel une partie du génome bactérien. La cible choisie devait refléter la viabilité cellulaire et par conséquent être synthétisée de manière constitutive lors de la vie de la bactérie et être détruite rapidement lors de la mort cellulaire. Le choix s'est porté sur un fragment du gène 16S-rRNA. Ce travail a permis de valider ce choix en corrélant ce marqueur moléculaire à la viabilité bactérienne au cours d'un traitement antibiotique bactéricide. De manière attendue, les S. gordonii sensibles à la pénicilline ont perdu ≥ 4 log10 CFU/ml après 48 heures de traitement par pénicilline alors que le mutant tolérant Tol1 en a perdu ≥ 1 log10 CFU/ml. De manière intéressant, la quantité de marqueur a augmenté proportionnellement au compte viable durant la phase de croissance bactérienne. Après administration du traitement antibiotique, l'évolution du marqueur dépendait de la capacité de la bactérie à survivre à l'action de l'antibiotique. Stable lors du traitement des souches tolérantes, la quantité de marqueur détectée diminuait de manière proportionnelle au compte viable lors du traitement des souches sensibles. Cette corrélation s'est confirmée lors de l'utilisation d'autres antibiotiques bactéricides. En conclusion, l'amplification par PCR du RNA ribosomal 16S permet d'évaluer rapidement la viabilité bactérienne au cours d'un traitement antibiotique en évitant le recours à la mise en culture dont les résultats ne sont obtenus qu'après plus de 24 heures. Cette méthode offre donc au clinicien une évaluation rapide de l'efficacité du traitement, particulièrement dans les situations, comme le choc septique, où l'initiation sans délai d'un traitement efficace est une des conditions essentielles du succès thérapeutique. ABSTRACT Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether ribosomal RNA (rRNA) could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts, and compared to quantitative real-time PCR amplification of either the 16S-rRNA genes (rDNA) or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost ≥ 4 log10 CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Toll mutant lost ≤ 1 log10 CFU/ml. Amplification of a 427-base fragment of 16S rDNA yielded amplicons that increased proportionally to viable counts during bacterial growth, but did not decrease during drug-induced killing. In contrast, the same 427-base fragment amplified from 16S rDNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Toll mutant (≥4 log10 CFU/ml and ≤1 lo10 CFU/ml, respectively), and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments the experiments were repeated by amplifying a 119-base region internal to the origina1 427-base fragment. The amount of 119-base amplicons increased proportionally to viability during growth, but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical to differentiate between live and dead bacteria.
Resumo:
SUMMARY Acid-sensing ion channels (ASICs) are non-voltage gated sodium channels. They are activated by rapid extracellular acidification and generate an inactivating inward current. Four ASIC genes have been cloned: ASIC1, 2, 3 and 4, with variants a and b for ASIC1and AS1C2. ASICs are expressed in neurons of the central (CNS) and peripheral nervous system (PNS). In the CNS, ASICs have a role in learning, memory, as well as in neuronal death in ischemia. In the PNS, ASICs are involved in the perception of acid-induced pain, as well as in mechanoperception. In one part of my thesis project, we addressed the question of the mechanism of regulation of ASIC1 a by the serine protease trypsin at the molecular level. Trypsin modifies the function of ASIC1 a but not of ASIC1b. In order to identify the channel region responsible for this effect, we created chimeras between ASIC1 a and 1b. Subsequently, to identify the exact trypsin target(s), we mutated predicted trypsin sites in the region identified by the chimera. In the second part of a project, we investigated the role of ASICs at the cellular level, in neuronal signaling. Using the whole-cell patch clamp in hippocampal neuronal culture, we studied the potential involvement of ASICs in action potential (AP) generation. In the first part of the thesis work, we showed that trypsin modifies ASIC1a function: it shifts the pH activation and the steady-state inactivation curve towards more acidic values and accelerates the time course of the channel recovery from inactivation. We also showed that trypsin cleaves ASIC1a and that the functional effect and a channel cleavage correlate. In the inactivated state, channels cannot be modified by trypsin. Cleavage occurs in a channel region that is also important for inactivation of all ASICs; a part of this region is critical for the inhibition of ASIC1 a by the spider toxin Psalmotoxin1. In the second part of the thesis work, we showed that ASIC activity can modulate AP generation. ASIC activity by itself can induce trains of APs. In situations in which this activity by itself is not sufficient to induce APs, it can contribute to AP generation. During high neuronal activity, ASIC activity can block already existing trains of APs. In conclusion, depending on the activity of neuron in a particular moment, ASICs can differently modulate AP generation; they can induce, facilitate or inhibit APs. We also showed that trypsin changes the capability of ASICs to modulate AP generation by shifting the pH dependence to more acidic values, which adapts channel gating to pH conditions which may occur in pathological conditions such as ischemia. Our finding that trypsin modifies ASIC1 a function identifies a novel pharmacological tool, and proposes a mechanism of ASIC1a regulation that may have a physiological importance. The identification of the exact site of trypsin action gives insight to the molecular mechanisms of ASIC regulation. This work proposes a role in modulation of AP generation for ASICs in the CNS. RESUME Les canaux ASIC sont les canaux ioniques activés par l'acidification rapide extracellulaire. Activés, ils génèrent un courant entrant qui inactive en présence de stimulus acide. Quatre gènes ASIC ont été clonés, ASIC1, 2, 3 et 4, avec les variants a et b pour ASIC1 et 2. Les ASICs sont exprimés dans les neurones du système nerveux central (SNC) et périphérique (SNP). Dans le SNC, les ASIC ont un rôle dans le mémoire, apprentissage et la mort neuronale dans t'ischémie. Dans le SNP, ils ont un rôle dans la perception de la douleur et méchanosensation. Dans une partie de mon projet de thèse, nous avons étudié les mécanismes de la régulation d'ASIC1a par la sérine-protéase trypsine au niveau moléculaire. La trypsine modifie la fonction d'ASIC1a et pas ASIC1b. Nous avons créé les chimères entre ASIC1 a et 1 b, afin d'identifier la région du canal responsable pour l'effet. Pour identifier le(s) site(s) exactes de l'action de la trypsine, nous avons muté les sites potentiels de la trypsine dans la région identifiée par les chimères. Dans la deuxième partie du projet, nous avons étudié le rôle des ASICs au niveau cellulaire. En utilisant la technique du patch clamp dans les cultures des neurones de l'hippocampe, nous avons étudié l'implication des ASICs dans la génération des potentiels d'action (PA). Nous avons montré que la trypsine agit sur le canal ASIC1a ; elle décale l'activation et « steady-state » inactivation vers les valeurs plus acides, et elle raccourcit le temps du « recovery » du canal. La trypsine coupe ASIC1a sur le résidu K145 et l'effet fonctionnel et la coupure corrèlent. Nous avons identifié la région du canal responsable pour l'inactivation de tous les ASICs ; une partie de cette région est responsable pour ['inhibition d'ASIC1 a par la Psalmotoxinel . Nous avons montré que les ASICs peuvent moduler la génération des PAs. L'activité des ASICs peut induire les trains des PAs. Quand l'activité des ASICs n'est pas suffisante pour induire le PA, elle peut contribuer à sa génération. Pendant l'activité neuronale forte, l'activité des ASICs peut bloquer les trains des PAs qui existent déjà. En conclusion, dépendant de l'activité neuronale, les ASICs peuvent moduler la génération des PAs différemment ; ils peuvent induire, faciliter ou inhiber les PAs. La trypsine change la capacité des ASICs de moduler les PAs. Après l'action de la trypsine, les ASICs peuvent moduler la génération des PAs dans les conditions légèrement acides, suivies par les fluctuations du pH acide, qui peuvent exister dans l'ischémie. Le fait que la trypsine agit sur ASIC1a définit l'outil pharmacologique et propose le mécanisme de la régulation d'ASICI a qui pourrait avoir l'importance physiologique. L'identification du site de l'action de la trypsine éclaircit les mécanismes moléculaires de la régulation des ASICs. Cette étude propose un rôle des ASICs dans la modulation de la génération des PAs. Résumé pour le public large Les neurones sont les cellules de système nerveux dont la fonction est la signalisation. Comme toutes les autres cellules, les neurones ont une membrane qui sépare l'intérieur du milieu extérieur. Cette membrane est imperméable pour des particules chargées (ions). Dans cette membrane existent les protéines spécifiques, « canaux », qui permettent le transport des ions d'un côté de la membrane à l'autre, comme réponse aux stimuli différents. Ce transport des ions à travers la membrane génère un courant, qu'on peut mesurer. Ce courant est la base de la communication entre les neurones, ou, ce qu'on appelle la signalisation neuronale. Quand ce courant est suffisamment grand, il permet la génération du potentiel d'action, qui est le message principal de communication neuronale. Les canaux ASIC (acid-sensing ion channel), que nous étudions dans le laboratoire, sont activés par les acides. Les acides sont relâchés dans beaucoup de situations dans le système nerveux. Les ASIC ont été découverts récemment (en 1996), et nous ne connaissons pas encore très bien toutes les fonctions de ces canaux. Nous savons qu'ils ont un rôle dans le mémoire, apprentissage, la sensation de la douleur et l'infarctus cérébral. Dans la première partie de ce projet de thèse, nous avons voulu mieux comprendre comment fonctionnent ces canaux. Pour faire ça, nous avons étudié la régulation des ASICs par une protéine, trypsine, qui coupe le canal ASIC. Nous avons étudié ou exactement la trypsine coupe le canal et quels effets ça produit sur la fonction du canal. Dans la deuxième partie du projet de thèse, nous avons voulu mieux connaître comment le canal fonctionne au niveau de la cellule, comment il interagit avec les autres canaux et si il a un rôle dans la génération des potentiels d'action. Nous avons pu montrer que la trypsine change la fonction du canal, ce qui lui permet de fonctionner différemment. Nous avons aussi déterminé ou exactement ta trypsine coupe le canal. Au niveau de la cellule, nous avons montré que les ASIC peuvent moduler la génération des potentiels d'action, étant, dépendant de l'activité du neurone, soit activateurs, soit inhibiteurs. La trypsine est une molécule qui peut être libérée dans le système nerveux pendant certaines conditions, comme l'infarctus cérébral. A cause de ça, les connaissances que la trypsine agit sur le anal ASIC pourraient être important physiologiquement. La connaissance de l'endroit exacte ou la trypsine coupe le canal nous aide à mieux comprendre la relation structure-fonction du canal. La modulation de la génération des potentiels d'actions par les ASIC indique que ces canaux peuvent avoir un rôle important dans la signalisation neuronale.
Resumo:
RESUME Introduction : Dans le coeur adulte, l'ischémie et la reperfusion entraînent des perturbations électriques, mécaniques, biochimiques et structurales qui peuvent causer des dommages réversibles ou irréversibles selon la sévérité de l'ischémie. Malgré les récents progrès en cardiologie et en chirurgie foetales, la connaissance des mécanismes impliqués dans la réponse du myocarde embryonnaire à un stress hypoxique transitoire demeure lacunaire. Le but de ce travail a donc été de caractériser les effets chrono-, dromo- et inotropes de l'anoxie et de la réoxygénation sur un modèle de coeur embryonnaire isolé. D'autre part, les effets du monoxyde d'azote (NO) et de la modulation des canaux KATP mitochondriaux (mito KATP) sur la récupération fonctionnelle postanoxique ont été étudiés. La production myocardique de radicaux d'oxygène (ROS) et l'activité de MAP Kinases (ERK et JNK) impliquées dans la signalisation cellulaire ont également été déterminées. Méthodes : Des coeurs d'embryons de poulet âgés de 4 jours battant spontanément ont été placés dans une chambre de culture puis soumis à une anoxie de 30 min suivie d'une réoxygénation de 60 min. L'activité électrique (ECG), les contractions de l'oreillette, du ventricule et du conotroncus (détectées par photométrie), la production de ROS (mesure de la fluorescence du DCFH) et l'activité kinase de ERK et JNK dans le ventricule ont été déterminées au cours de l'anoxie et de la réoxygénation. Les coeurs ont été traités avec un bloqueur des NO synthases (L-NAME), un donneur de NO (DETA-NONOate), un activateur (diazoxide) ou un inhibiteur (5-HD) des canaux mitoKATP un inhibiteur non-spécifique des PKC (chélérythrine) ou un piégeur de ROS (MPG). Résultats : L'anoxie et la réoxygénation entraînaient des arythmies (essentiellement d'origine auriculaire) semblables à celles observées chez l'adulte, des troubles de la conduction (blocs auriculo-ventriculaires de 1er, 2ème et 3ème degré) et un ralentissement marqué du couplage excitation-contraction (E-C) ventriculaire. En plus de ces arythmies, la réoxygénation déclenchait le phénomène de Wenckelbach, de rares échappements ventriculaires et une sidération myocardique. Aucune fibrillation, conduction rétrograde ou activité ectopique n'ont été observées. Le NO exogène améliorait la récupération postanoxique du couplage E-C ventriculaire alors que L'inhibition des NOS la ralentissait. L'activation des canaux mito KATP augmentait la production mitochondriale de ROS à la réoxygénation et accélérait la récupération de la conduction (intervalle PR) et du couplage E-C ventriculaire. La protection de ce couplage était abolie par le MPG, la chélérythrine ou le L-NAME. Les fonctions électrique et contractile de tous les coeurs récupéraient après 30-40 min de réoxygénation. L'activité de ERK et de JNK n'était pas modifiée par L'anoxie, mais doublait et quadruplait, respectivement, après 30 min de réoxygénation. Seule l'activité de JNK était diminuée (-60%) par l'activation des canaux mitoKATP. Cet effet inhibiteur était partiellement abolit par le 5-HD. Conclusion: Dans le coeur immature, le couplage E-C ventriculaire semble être un paramètre particulièrement sensible aux conditions d'oxygénation. Sa récupération postanoxique est améliorée par l'ouverture des canaux mitoKATP via une signalisation impliquant les ROS Ies PKC et le NO. Une réduction de l'activité de JNK semble également participer à cette protection. Nos résultats suggèrent que les mitochondries jouent un rôle central dans la modulation des voies de signalisation cellulaire, en particulier lorsque les conditions métaboliques deviennent défavorables. Le coeur embryonnaire isolé représente donc un modèle expérimental utile pour mieux comprendre les mécanismes associés à une hypoxie in utero et pour améliorer les stratégies thérapeutiques en cardiologie et chirurgie foetales. ABSTRACT Physiopathology of the anoxic-reoxygenated embryonic heart: Protective role of NO and KATP channel Aim: In the adult heart, the electrical, mechanical, biochemical and structural disturbances induced by ischemia and reperfusion lead to reversible or irreversible damages depending on the severity and duration of ischemia. In spite of recent advances in fetal cardiology and surgery, little is known regarding the cellular mechanisms involved in hypoxia-induced dysfunction in the developing heart. The aim of this study was to precisely characterize the chrono-, dromo- and inotropic disturbances associated with anoxia-reoxygenation in an embryonic heart model. Furthermore, the roles that nitric oxide (NO), reactive oxygen species (ROS), mitochondrial KATP, (mito KATP) channel and MAP Kinases could play in the stressed developing heart have been investigated. Methods: Embryonic chick hearts (4-day-old) were isolated and submitted in vitro to 30 min anoxia followed by 60 min reoxygenation. Electrical (ECG) and contractile activities of atria, ventricle and conotruncus (photometric detection), ROS production (DCFH fluorescence) and ERK and JNK activity were determined in the ventricle throughout anoxia-reoxygenation. Hearts were treated with NO synthase inhibitor (L-NAME), NO donor (DETA-NONOate), mitoKATP channel opener (diazoxide) or blocket (5-HD), PKC inhibitor (chelerythrine) and ROS scavenger (MPG). Results: Anoxia and reoxygenation provoked arrhythxnias (mainly originating from atrial region), troubles of conduction (st, 2nd, and 3rd degree atrio-ventricular blocks) and disturbances of excitation-contraction (E-C) coupling. In addition to these types of arrhythmias, reoxygenation triggered Wenckebach phenomenon and rare ventricular escape beats. No fibrillations, no ventricular ectopic beats and no electromechanical dissociation were observed. Myocardial stunning was observed during the first 30 min of reoxygenation. All hearts fully recovered their electrical and mechanical functions after 30-40 min of reoxygenation. Exogenous NO improved while NOS inhibition delayed E-C coupling recovery. Mito KATP, channel opening increased reoxygenation-induced ROS production and improved E-C coupling and conduction (PR) recovery. MPG, chelerythrine or L-NAME reversed this effect. Reoxygenation increased ERK and JNK activities land 4-fold, respectively, while anoxia had no effect. MitoKATP channel opening abolished the reoxygenation-induced activation of JNK but had no effect on ERK activity. This inhibitory effect was partly reversed by mitoKATP channel blocker but not by MPG. Conclusion: In the developing heart, ventricular E-C coupling was found to be specially sensitive to hypoxia-reoxygenation and its postanoxic recovery was improved by mitoKATP channel activation via a ROS-, PKC- and NO-dependent pathway. JNK inhibition appears to be involved in this protection. Thus, mitochondria can play a pivotal role in the cellular signalling pathways, notably under critical metabolic conditions. The model of isolated embryonic heart appears to be useful to better understand the mechanisms underlying the myocardial dysfunction induced by an in utero hypoxia and to improve therapeutic strategies in fetal cardiology and surgery.
Resumo:
Résumé Objectifs : La thérapie photodynamique a pour but la destruction sélective du tissu néoplasique par interaction de lumière, d'oxygène et d'une substance photosensibilisatrice (la Protoporphyrine IX dans notre étude). Malgré une accumulation sélective du photosensibilisateur dans le tissu tumoral, la thérapie photodynamique du carcinome urothélial de la vessie peut endommager les cellules normales de l'épithélium urinaire. La prévention de ces lésions est importante pour la régénération de la muqueuse. Notre étude sur un modèle in vitro d'urothélium porcin étudie l'influence de la concentration du photosensibilisateur, des paramètres d'irradiation et de la production d'intermédiaires réactifs de l'oxygène (ROS) sur les effets photodynamique. Le but était de déterminer les conditions seuil pour épargner l'urothélium sain. Méthode: Dans une chambre de culture transparente à deux compartiments, des muqueuses vésicales de porc maintenues en vie ont été incubées avec une solution d'hexyl-aminolévulinate (HAL), le précurseur de la Protoporphyrine IX. Ces muqueuses ont ensuite été irradiées avec des doses lumineuses croissantes en lumière bleue et en lumière blanche, et les altérations cellulaires ont été évaluées par microscopie électronique à balayage et par un colorant fluorescent, le Sytox green. Nous avons également évalué la production d'intermédiaires réactifs de l'oxygène parla mesure de la fluorescence intracellulaire de Rhodamine 123 (R123), produit de l'oxydation de la Dihydrorhodamine 123 (DHR123) non fluorescente. Ces valeurs ont été corrélées avec celles du photo blanchiment de la PAIX. Résultats : Le taux de mortalité cellulaire était dépendant de la concentration de PAIX. Après 3 heures d'incubation, la valeur seuil de dose lumineuse pour la lumière bleu était de 0.15 et 0.75 J/cm2 (irradiance 30 et 75 mW/cm2, respectivement) et pour la lumière blanche de 0.55 J/cm2 (irradiante 30 mW/cm2). Le taux de photo blanchiment était inversement proportionnel à l'irradiante. Le système de détection des intermédiaires réactifs de l'oxygène DHR123/R123 a démontré une bonne corrélation avec les valeurs seuil pour toutes les conditions d'irradiation utilisées. Conclusions : Nous avons déterminé les doses lumineuses permettant d'épargner 50% des cellules urothéliales saines. L'utilisation d'une faible irradiante associée à des systèmes permettant de mesurer la production d'intermédiaires réactifs de l'oxygène dans les tissus irradiés pourrait améliorer la dosimétrie in vivo et l'efficacité de la thérapie photodynamique. Abstract Background and Objectives: Photodynamic therapy of superficial bladder cancer may cause damages to the normal surrounding bladder wall. Prevention of these is important for bladder healing. We studied the influence of photosensitizes concentration, irradiation parameters and production of reactive oxygen species (ROS) on the photodynamically induced damage in the porcine urothelium in vitro. The aim was to determine the threshold conditions for the cell survival. Methods: Living porcine bladder mucosae were incubated with solution of hexylester of 5-aminolevulinic acid (HAL). The mucosae were irradiated with increasing doses and cell alterations were evaluated by scanning electron microscopy and by Sytox green fluorescence. The urothelial survival score was correlated with Protoporphyrin IX (PpIX) photobleaching and intracellular fluorescence of Rhodamine 123 reflecting the ROS production. Results: The mortality ratio was dependent on PpIX concentration. After 3 hours of incubation, the threshold radiant exposures for blue light were 0.15 and 0.75 J/cm2 (irradiance 30 and 75 mW/cm2, respectively) and for white light 0.55 J/cm2 (irradiance 30 mW/cm2). Photobleaching rate increased with decreasing irradiance. Interestingly, the DHR123/R123 reporter system correlated well with the threshold exposures under all conditions used. Conclusions: we have determined radiant exposures sparing half of normal urothelial cells. We propose that the use of low irradiance combined with systems reporting the ROS production in the irradiated tissue could improve the in vivo dosimetry and optimize the PDT.
Resumo:
Abstract The c-myc gene is one of the most frequently mutated oncogenes found in human tumors. c-Myc has been implicated in the regulation of various biological processes including cell cycle progression, cellular growth, differentiation, angiogenesis, immortalization and apoptosis. To assess the normal role of c-Myc in epithelial cell types in vitro and in vivo we have deleted the c-myc gene in keratinocytes and in the adult skin epidermis by conditional Cre/loxP mediated recombination. Similar to what we have previously shown in mouse embryonic fibroblasts acute elimination of c-Myc activity in cultured keratinocytes causes cells to cease proliferation and adapt a flat cell morphology. Mutant cells accumulate in a diploid Ki67neg stage, indicative of a quiescent Go stage. This demonstrates that c-Myc activity is essential to maintain keratinocytes in a productive cell cycle. In addition, mutant keratinocytes showed a defect in Ca2+ induced induction of the differentiation marker Keratin 1 suggesting a role for c-Myc during differentiation. To assess the in vivo role of c-Myc we used a tamoxifen inducible K5::CreERT transgene to delete the c-myc gene in the adult skin epidermis. Unexpectedly, despite strong c-Myc expression in the basal compartment it is not required for maintenance of the skin epidermis in the adult mouse. The epidermis appeared normal with respect to both proliferation and differentiation. In addition, no selection against c-Myc deficient epidermal cells occurred over many months, further confirming that c-Myc is dispensable for normal skin homeostasis. Even more surprising, TPA induced hyperproliferation also occurred in a c-Myc independent manner. Treatment of the skin with the mutagen DMBA prior to TPA is a classical way to induce papillomas by selecting for mutations that lead to dominant activation of the oncogene Ha-Ras. Most interestingly tumor formation was severely inhibited suggesting that tumor progression requires endogenous c-Myc. Further studies are required to address whether the role of c-Myc in the activation of telomerase or the Werner protein, or its role to induce angiogenesis is required for skin tumor progression, In conclusion, this work shows that while c-Myc is not required for maintenance or hyperplasia of mouse epidermis, it is essential for skin tumor progression in collaboration with Ras. Résumé Le gène c-myc est un des oncogènes les plus fréquemment mutés dans les tumeurs humaines. c-Myc est impliqué dans la régulation de processus biologiques variés, comme la progression du cycle cellulaire, la croissance cellulaire, la différenciation, l'angiogenèse, l'immortalisation et l'apoptose. Pour caractériser le rôle physiologique de c-Myc dans les cellules de type épithélial in vitro et in vivo, le gène c-myc a été délété dans des kératinocytes primaires et dans l'épiderme de peau de souris adultes par des recombinaisons conditionnelles (système Cre/loxP). De la même façon que dans les fibroblastes d'embryon de souris, l'élimination aiguë de l'activité de c-Myc dans les kératinocytes en culture primaire provoque l'arrêt de la prolifération des cellules et leur applatissement morphologique. Les cellules mutantes restent dans un stade diploïde Ki67neg, indiquant un stade quiescent Go. Cela démontre que l'activité de c-Myc est essentielle pour maintenir les kératinocytes dans le cycle cellulaire. De plus, les kératinocytes mutants montrent une déficience pour le marqueur de différenciation Kératine 1 au cours de la différenciation induite par le calcium, suggérant un rôle de c-Myc dans la différenciation cellulaire. Pour comprendre le rôle de c-Myc in vivo, le transgène K5::CreERT inductible par le tamoxifen a été utilisé pour déléter le gène c-inyc dans l'épiderme de souris adultes. Etonnemment, malgré une forte expression de c-Myc dans le compartiment basal de l'épiderme, ce gène n'est pas nécessaire pour la maintenance de l'épiderme de la peau chez la souris adulte. L'épiderme apparait normal avec une prolifération et une différenciation physiologique des cellules. De plus, il n'y a pas de sélection contre les cellules épidennales c-Myc déficientes après plusieurs mois, ce qui confirme que c-Myc n'est pas nécessaire pour l'homéostasie normale de la peau. Encore plus surprenant, une hyperprolifération est également induite par du TPA chez les souris mutantes, impliquant une voie de prolifération indépendante de c-Myc. Le traitement de la peau par le mutagène DMBA avant le traitement au TPA est une voie classique d'induction de papillomes, par sélection de mutations conduisant à l'activation de l'oncogène Ha-Ras. La formation des tumeurs est fortement inhibée chez les souris mutantes, suggérant que la progression des tumeurs nécessite la présence endogène de c-Myc. De nouvelles études sont nécessaires pour savoir si c-Myc a un rôle dans l'activation de la télomérase ou de la protéine de Werner, ou encore dans l'angiogénèse, qui sont nécessaires pour la progression tumorale. En conclusion, ce travail montre que même si c-Myc n'est pas nécessaire pour la maintenance ou l'hyperplasie de la peau de souris, il est essentiel pour la progression des tumeurs de la peau en collaboration avec Ras.