118 resultados para crustin-like gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To identify the genetic defect for the Coppock-like cataract (CCL) affecting a Swiss family, which defect was unlinked to the chromosome 2q33-35 CCL locus. METHODS: A large family was characterized for linkage analysis by slit lamp examination or by the review of drawings made before cataract extraction. The affection status was attributed before genotyping, and the genotyping was masked to the affection status. Two-point and multipoint linkage analyses were performed using the MLINK and the LINKMAP components of the LINKAGE program package (ver. 5.1), respectively. Mutational analysis of candidate genes was performed by a combination of direct cycle sequencing and an amplification refractory mutation system assay. RESULTS: Ten individuals were affected with the CCL phenotype. The disease was autosomal dominant and appeared to be fully penetrant. A new CCL locus was identified on chromosome 22q11.2 within a 11.67-cM interval (maximum lod score [Zmax] = 4.14; theta = 0). Mutational analysis of the CRYBB2 candidate gene identified a disease-causing mutation in exon 6. This sequence change was identical with that previously described to be associated with the cerulean cataract, a clinically distinct entity. CONCLUSIONS: The CCL phenotype is genetically heterogeneous with a second gene on chromosome 22q11.2, CRYBB2. The CCL and the cerulean cataract are two distinct clinical entities associated with the same genetic defect. This work provides evidence for a modifier factor that influences cataract formation and that remains to be identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex, plays a fundamental role in the sensing of LPS from gram-negative bacteria. Activation of TLR4 signaling pathways by LPS is a critical upstream event in the pathogenesis of gram-negative sepsis, making TLR4 an attractive target for novel antisepsis therapy. To validate the concept of TLR4-targeted treatment strategies in gram-negative sepsis, we first showed that TLR4(-/-) and myeloid differentiation primary response gene 88 (MyD88)(-/-) mice were fully resistant to Escherichia coli-induced septic shock, whereas TLR2(-/-) and wild-type mice rapidly died of fulminant sepsis. Neutralizing anti-TLR4 antibodies were then generated using a soluble chimeric fusion protein composed of the N-terminal domain of mouse TLR4 (amino acids 1-334) and the Fc portion of human IgG1. Anti-TLR4 antibodies inhibited intracellular signaling, markedly reduced cytokine production, and protected mice from lethal endotoxic shock and E. coli sepsis when administered in a prophylactic and therapeutic manner up to 13 h after the onset of bacterial sepsis. These experimental data provide strong support for the concept of TLR4-targeted therapy for gram-negative sepsis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous preclinical and clinical studies have shown that interleukin-2 (IL-2) induces regression of metastatic tumors. We have conducted a phase I/II, multicenter, open-label, dose-escalating study to evaluate the safety, efficacy, and biological effects of repeated intratumoral injections of adenovirus-IL-2 (TG1024) in patients with advanced solid tumors and melanoma. Thirty five patients (twenty-five with metastatic melanoma and ten with other solid tumors) were treated in eight successive cohorts at dose levels ranging from 3 x 10(8) to 3 x 10(11) viral particles (vp). Intratumoral TG1024 injections in combination with dacarbazine (DTIC) were tested in metastatic melanoma in one cohort. No clinical responses were observed at doses below 3 x 10(11) vp. Six local objective responses were recorded in patients receiving 3 x 10(11) vp per treatment [five in metastatic melanoma and one in metastatic squamous cell carcinoma (SCC) of the skin], of which two were complete responses (CRs). Most of the common side effects were injection site reactions and flu-like syndrome. TG1024 dose intensification across cohorts resulted in increased serum IL-2 levels after the injection. Intratumoral TG1024 injection induced pronounced inflammation of the treated lesion, with predominant CD8(+), TIA+ lymphocytic infiltrate. Our results show that intratumoral injections of TG1024 are safe and well tolerated. The clinical activity of TG1024 observed in this study warrants further investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mucosa-associated lymphoid tissue 1 (MALT1) controls antigen receptor-mediated signalling to nuclear factor κB (NF-κB) through both its adaptor and protease function. Upon antigen stimulation, MALT1 forms a complex with BCL10 and CARMA1, which is essential for initial IκBα phosphorylation and NF-κB nuclear translocation. Parallel induction of MALT1 protease activity serves to inactivate negative regulators of NF-κB signalling, such as A20 and RELB. Here we demonstrate a key role for auto-proteolytic MALT1 cleavage in B- and T-cell receptor signalling. MALT1 cleavage occurred after Arginine 149, between the N-terminal death domain and the first immunoglobulin-like region, and did not affect its proteolytic activity. Jurkat T cells expressing an un-cleavable MALT1-R149A mutant showed unaltered initial IκBα phosphorylation and normal nuclear accumulation of NF-κB subunits. Nevertheless, MALT1 cleavage was required for optimal activation of NF-κB reporter genes and expression of the NF-κB targets IL-2 and CSF2. Transcriptome analysis confirmed that MALT1 cleavage after R149 was required to induce NF-κB transcriptional activity in Jurkat T cells. Collectively, these data demonstrate that auto-proteolytic MALT1 cleavage controls antigen receptor-induced expression of NF-κB target genes downstream of nuclear NF-κB accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Growth Arrest-Specific Gene 6 product (Gas6) is, like anticoagulant protein C, a vitamin K-dependent protein. Our aim was to determine whether Gas6 plays a role in sepsis. Materials and methods: We submitted mice lacking Gas6 (Gas6)/)) or one of its receptors (Axl)/), Tyro3)/) or Mertk)/)) to LPS-induced endotoxemia and peritonitis (cecal ligation and puncture (CLP) and inoculation of E. coli). In addition, we measured Gas6 or its soluble receptors in plasma of eight volunteers that received LPS, 13 healthy subjects, 28 patients with severe sepsis, and 18 patients with non-infectious inflammatory diseases. Results: Gas6 and its soluble receptor sAxl raised in mice models and TNF-a was more elevated in Gas6)/) mice than in wild-type (WT). Protein array showed that before and after LPS injection, titers of 62 cytokines were more elevated in plasma of Gas6)/) than WT mice. Endotoxemia-induced mortality was higher in Gas6)/), Axl)/), Tyro3)/) and Mertk)/) compared to WT mice and mortality subsequent to CLP was amplified in Gas6)/) mice. LPS-stimulated Gas6)/) macrophages produced more cytokines than WT macrophages. This production was dampened by recombinant Gas6. Phosphorylation of Akt in Gas6)/) macrophages was reduced, but p38 phosphorylation and NF-jB translocation were increased. In human, Gas6 raised in plasma after LPS (2 ng/kg). Gas6 and sAxl were higher in patients with severe sepsis than in healthy subjects or control patients, and there was a non-significant trend for higher Gas6 in the survival group. Conclusions: Our data point to Gas6 as a major modulator of innate immunity and provide thereby novel insights into the mechanism of sepsis. Thus Gas6 and its receptors might constitute potential therapeutic targets for the development of new immunomodulating drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aim of the study: Genomic gains and losses play a crucial role in the development and progression of DLBCL and are closely related to gene expression profiles (GEP), including the germinal center B-cell like (GCB) and activated B-cell like (ABC) cell of origin (COO) molecular signatures. To identify new oncogenes or tumor suppressor genes (TSG) involved in DLBCL pathogenesis and to determine their prognostic values, an integrated analysis of high-resolution gene expression and copy number profiling was performed. Patients and methods: Two hundred and eight adult patients with de novo CD20+ DLBCL enrolled in the prospective multicentric randomized LNH-03 GELA trials (LNH03-1B, -2B, -3B, 39B, -5B, -6B, -7B) with available frozen tumour samples, centralized reviewing and adequate DNA/RNA quality were selected. 116 patients were treated by Rituximab(R)-CHOP/R-miniCHOP and 92 patients were treated by the high dose (R)-ACVBP regimen dedicated to patients younger than 60 years (y) in frontline. Tumour samples were simultaneously analysed by high resolution comparative genomic hybridization (CGH, Agilent, 144K) and gene expression arrays (Affymetrix, U133+2). Minimal common regions (MCR), as defined by segments that affect the same chromosomal region in different cases, were delineated. Gene expression and MCR data sets were merged using Gene expression and dosage integrator algorithm (GEDI, Lenz et al. PNAS 2008) to identify new potential driver genes. Results: A total of 1363 recurrent (defined by a penetrance > 5%) MCRs within the DLBCL data set, ranging in size from 386 bp, affecting a single gene, to more than 24 Mb were identified by CGH. Of these MCRs, 756 (55%) showed a significant association with gene expression: 396 (59%) gains, 354 (52%) single-copy deletions, and 6 (67%) homozygous deletions. By this integrated approach, in addition to previously reported genes (CDKN2A/2B, PTEN, DLEU2, TNFAIP3, B2M, CD58, TNFRSF14, FOXP1, REL...), several genes targeted by gene copy abnormalities with a dosage effect and potential physiopathological impact were identified, including genes with TSG activity involved in cell cycle (HACE1, CDKN2C) immune response (CD68, CD177, CD70, TNFSF9, IRAK2), DNA integrity (XRCC2, BRCA1, NCOR1, NF1, FHIT) or oncogenic functions (CD79b, PTPRT, MALT1, AUTS2, MCL1, PTTG1...) with distinct distribution according to COO signature. The CDKN2A/2B tumor suppressor locus (9p21) was deleted homozygously in 27% of cases and hemizygously in 9% of cases. Biallelic loss was observed in 49% of ABC DLBCL and in 10% of GCB DLBCL. This deletion was strongly correlated to age and associated to a limited number of additional genetic abnormalities including trisomy 3, 18 and short gains/losses of Chr. 1, 2, 19 regions (FDR < 0.01), allowing to identify genes that may have synergistic effects with CDKN2A/2B inactivation. With a median follow-up of 42.9 months, only CDKN2A/2B biallelic deletion strongly correlates (FDR p.value < 0.01) to a poor outcome in the entire cohort (4y PFS = 44% [32-61] respectively vs. 74% [66-82] for patients in germline configuration; 4y OS = 53% [39-72] vs 83% [76-90]). In a Cox proportional hazard prediction of the PFS, CDKN2A/2B deletion remains predictive (HR = 1.9 [1.1-3.2], p = 0.02) when combined with IPI (HR = 2.4 [1.4-4.1], p = 0.001) and GCB status (HR = 1.3 [0.8-2.3], p = 0.31). This difference remains predictive in the subgroup of patients treated by R-CHOP (4y PFS = 43% [29-63] vs. 66% [55-78], p=0.02), in patients treated by R-ACVBP (4y PFS = 49% [28-84] vs. 83% [74-92], p=0.003), and in GCB (4y PFS = 50% [27-93] vs. 81% [73-90], p=0.02), or ABC/unclassified (5y PFS = 42% [28-61] vs. 67% [55-82] p = 0.009) molecular subtypes (Figure 1). Conclusion: We report for the first time an integrated genetic analysis of a large cohort of DLBCL patients included in a prospective multicentric clinical trial program allowing identifying new potential driver genes with pathogenic impact. However CDKN2A/2B deletion constitutes the strongest and unique prognostic factor of chemoresistance to R-CHOP, regardless the COO signature, which is not overcome by a more intensified immunochemotherapy. Patients displaying this frequent genomic abnormality warrant new and dedicated therapeutic approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cellsexpress receptors specific for class I major histocompatibility complex (MHC) molecules. In the mouse, the class I specific receptors identified to date belong to the polymorphic Ly49 receptor family. Engagement of Ly49 receptors with their respective MHC ligands results in negative regulation of NK cell effector functions, consistent with a critical role of these receptors in "missing self" recognition. The Ly49 receptors analyzed so far are clonally distributed such that multiple distinct Ly49 receptors can be expressed by individual NK cells (for review see refs. 1-3). The finding that most NK cells that express the Ly49A receptor do so from a single Ly49A allele (whereby expression can occur from the maternal or the paternal chromosome) may thus reflect a putative receptor distribution process that restricts the number of Ly49 receptors expressed in a single NK cell (3-5).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to modulate multiple cellular processes, including apoptosis. The aim of this study was to assess the effects of HCV NS5A on apoptosis induced by Toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). Methods. Apoptotic responses to TLR4 ligands and the expression of molecules involved in TLR signaling pathways in human hepatocytes were examined with or without expression of HCV NS5A. Results. HCV NS5A protected HepG2 hepatocytes against LPS-induced apoptosis, an effect linked to reduced TLR4 expression. A similar downregulation of TLR4 expression was observed in Huh-7-expressing genotype 1b and 2a. In agreement with these findings, NS5A inhibited the expression of numerous genes encoding for molecules involved in TLR4 signaling, such as CD14, MD-2, myeloid differentiation primary response gene 88, interferon regulatory factor 3, and nuclear factor-κB2. Consistent with a conferred prosurvival advantage, NS5A diminished the poly(adenosine diphosphate-ribose) polymerase cleavage and the activation of caspases 3, 7, 8, and 9 and increased the expression of anti-apoptotic molecules Bcl-2 and c-FLIP. Conclusions. HCV NS5A downregulates TLR4 signaling and LPS-induced apoptotic pathways in human hepatocytes, suggesting that disruption of TLR4-mediated apoptosis may play a role in the pathogenesis of HCV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcriptional transactivational activities of the phosphoprotein cAMP-response element-binding protein (CREB) are activated by the cAMP-dependent protein kinase A signaling pathway. Dimers of CREB bind to the palindromic DNA element 5'-TGACGTCA-3' (or similar motifs) called cAMP-responsive enhancers (CREs) found in the control regions of many genes, and activate transcription in response to phosphorylation of CREB by protein kinase A. Earlier we reported on the cyclical expression of the CREB gene in the Sertoli cells of the rat testis that occurred concomitant with the FSH-induced rise in cellular cAMP levels and suggested that transcription of the CREB gene may be autoregulated by cAMP-dependent transcriptional proteins. We now report the structure of the 5'-flanking sequence of the human CREB gene containing promoter activity. The promoter has a high content of guanosines and cytosines and lacks canonical TATA and CCAAT boxes typically found in the promoters of genes in eukaryotes. Notably, the promoter contains three CREs and transcriptional activities of a promoter-luciferase reporter plasmid transfected to placental JEG-3 cells are increased 3- to 5-fold over basal activities in response to either cAMP or 12-O-tetradecanoyl phorbol-14-acetate, and give 6- to 7-fold responses when both agents are added. The CREs bind recombinant CREB and endogenous CREB or CREB-like proteins contained in placental JEG-3 cells and also confer cAMP-inducible transcriptional activation to a heterologous minimal promoter. Our studies suggest that the expression of the CREB gene is positively autoregulated in trans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. HDAC inhibitors down-regulated the expression of numerous host defense genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, chemokines, growth factors, and costimulatory molecules as assessed by genome-wide microarray analyses or innate immune responses of macrophages and dendritic cells stimulated with Toll-like receptor agonists. HDAC inhibitors induced the expression of Mi-2β and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gp-9 gene in fire ants represents an important model system for studying the evolution of social organization in insects as well as a rich source of information relevant to other major evolutionary topics. An important feature of this system is that polymorphism in social organization is completely associated with allelic variation at Gp-9, such that single-queen colonies (monogyne form) include only inhabitants bearing B-like alleles while multiple-queen colonies (polygyne form) additionally include inhabitants bearing b-like alleles. A recent study of this system by Leal and Ishida (2008) made two major claims, the validity and significance of which we examine here. After reviewing existing literature, analyzing the methods and results of Leal and Ishida (2008), and generating new data from one of their study sites, we conclude that their claim that polygyny can occur in Solenopsis invicta in the U.S.A. in the absence of expression of the b-like allele Gp-9(b) is unfounded. Moreover, we argue that available information on insect OBPs (the family of proteins to which GP-9 belongs), on the evolutionary/population genetics of Gp-9, and on pheromonal/behavioral control of fire ant colony queen number fails to support their view that GP-9 plays no role in the chemosensory-mediated communication that underpins regulation of social organization. Our analyses lead us to conclude that there are no new reasons to question the existing consensus view of the Gp-9 system outlined in Gotzek and Ross (2007).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss-of-function mutations in human profilaggrin gene have been identified as the cause of ichthyosis vulgaris (IV), and as a major predisposition factor for atopic dermatitis (AD). Similarly, flaky tail (a/a ma ft/ma ft/J) mice were described as a model for IV, and shown to be predisposed to eczema. The aim of this study was to correlate the flaky tail mouse phenotype with human IV and AD, in order to dissect early molecular events leading to atopic dermatitis in mice and men, suffering from filaggrin deficiency. Thus, 5-days old flaky tail pups were analyzed histologically, expression of cytokines was measured in skin and signaling pathways were investigated by protein analysis. Human biopsies of IV and AD patients were analyzed histologically and by real time PCR assays. Our data show acanthosis and hyperproliferation in flaky tail epidermis, associated with increased IL1β and thymic stromal lymphopoietin (TSLP) expression, and Th2-polarization. Consequently, NFκB and Stat pathways were activated, and IL6 mRNA levels were increased. Further, quantitative analysis of late epidermal differentiation markers revealed increased Small proline-rich protein 2A (Sprr2a) synthesis. Th2-polarization and Sprr2a increase may result from high TSLP expression, as shown after analysis of 5-days old K14-TSLP tg mouse skin biopsies. Our findings in the flaky tail mouse correlate with data obtained from patient biopsies of AD, but not IV. We propose that proinflammatory cytokines are responsible for acanthosis in flaky tail epidermis, and together with the Th2-derived cytokines lead to morphological changes. Accordingly, the a/a ma ft/ma ft/J mouse model can be used as an appropriate model to study early AD onset associated with profilaggrin deficiency.