128 resultados para control of load variations
Resumo:
We have used genetic and molecular techniques to investigate the interactions among genes required for the initiation and regulation of septum formation in Schizosaccharomyces pombe. Our data suggest that the products of the cdc7, cdc11, cdc14 and cdc16 genes interact. These activities may regulate the function of the cdc15 gene product. A model for the control of septation in fission yeast is presented.
Resumo:
Rapport de synthèse : L'infection par le virus de l'hépatite C (VHC) a une évolution sévère chez les patients co-infectés par VIH/VHC, de même que chez les patients transplantés hépatiques. Toutefois, les mécanismes impliqués dans cette évolution restent peu clairs. Dans ce travail, nous étudions le profil fonctionnel des cellules T spécifiques dirigées contre le virus de l'hépatite C chez 86 patients mono-infectés par VHC, 48 patients co-infectés par VIH/VHC et 42 patients ayant bénéficié d'une transplantation hépatique. La production d'IFN-Y et d'IL-2 et la capacité de proliférer des cellules T CD4+ et CD8+ sont évaluées après stimulation par des peptides dérivés du VHC. Chez les patients mono-infectés par le VHC, les cellules T spécifiques au VHC sont polyfonctionnelles du point de vue de la sécrétion de cytokines, avec trois profils de sécrétion pour les cellules T CD4+: sécrétion uniquement de IL-2, sécrétion de IL-2 et IFN-y et sécrétion uniquement de IFN-gamma, et de deux profils pour les cellules T CD8+: sécrétion de IL-2 et IFN-y et sécrétion uniquement de IFN-gamma. En revanche, les cellules T spécifiques au VHC chez les individus coinfectés par VIH/VHC et chez les patients transplantés hépatiques ont un profil de sécrétions de cytokines marqué par l'absence de cellules CD4+ sécrétant uniquement l'Il-2 et l'absence de cellules CD8+ sécrétant à la fois IL-2 et IFN-gamma. De plus, la prolifération de cellules T CD4+ et CD8+ spécifiques au VHC est considérablement réduite chez les patients co-infectés par VIH/VHC, comme chez les transplantés hépatiques. La présence de cellules T effectrices uniquement (définies par l'absence de cellules T CD4+ sécrétants uniquement de l'IL-2 et l'absence de cellules T CD8+ sécrétant à la fois IL-2 et IFN-gamma et altération de la capacité proliférative) est associée avec une charge virale VHC significativement plus élevée et une fibrose hépatique plus sévère. Par conséquent, les présents résultats suggèrent la participation de mécanismes immunitaires dans l'évolution accélérée de l'hépatite C chez les patients co-infectés par VIH-1 et chez les patients greffés hépatiques.
Resumo:
The indication for pulmonary artery banding is currently limited by several factors. Previous attempts have failed to produce adjustable pulmonary artery banding with reliable external regulation. An implantable, telemetrically controlled, battery-free device (FloWatch) developed by EndoArt SA, a medical company established in Lausanne, Switzerland, for externally adjustable pulmonary artery banding was evaluated on minipigs and proved to be effective for up to 6 months. The first human implant was performed on a girl with complete atrioventricular septal defect with unbalanced ventricles, large patent ductus arteriosus and pulmonary hypertension. At one month of age she underwent closure of the patent ductus arteriosus and FloWatch implantation around the pulmonary artery through conventional left thoracotomy. The surgical procedure was rapid and uneventful. During the entire postoperative period bedside adjustments (narrowing or release of pulmonary artery banding with echocardiographic assessment) were repeatedly required to maintain an adequate pressure gradient. The early clinical results demonstrated the clinical benefits of unlimited external telemetric adjustments. The next step will be a multi-centre clinical trial to confirm the early results and adapt therapeutic strategies to this promising technology.
Resumo:
The clinical relevance of dendritic cells (DCs) at the tumor site remains a matter of debate concerning their role in the generation of effective antitumor immunity in human cancers. We performed a comprehensive immunohistochemical analysis using a panel of DC-specific antibodies on regressing tumor lesions and sentinel lymph nodes (SLNs) in melanoma patients. Here we show in a case report involving spontaneous regression of metastatic melanoma that the accumulation of DC-Lamp+ DCs, clustered with tumor cells and lymphocytes, is associated with local expansion of antigen-specific memory effector CTLs. These findings were extended in a series of 19 melanoma-positive SLNs and demonstrated a significant correlation between the density of DC-Lamp+ DC infiltrates in SLNs with the absence of metastasis in downstream lymph nodes. This study, albeit performed in a limited series of patients, points to a pivotal role of mature DCs in the local expansion of efficient antitumor T-cell-mediated immune responses at the initial sites of metastasis and may have important implications regarding the prognosis, staging, and immunotherapy of melanoma patients.
Resumo:
The systemic response to injury or infection is often accompanied by significant alterations in host metabolism and glucose homeostasis. Within the liver, these changes include a decrease in glycogenesis and an increase in gluconeogenesis, and in peripheral tissues, the development of insulin resistance and the increased utilization of glucose by non-insulin-dependent pathways. Depending on the severity and the duration of the response, both hyper- and hypoglycemia can ensue and each can become a clinically important manifestation of the systemic inflammatory response. The protein known as macrophage migration inhibitory factor (MIF) has been identified recently to play a central role in host immunity and to regulate glucocorticoid effects on the immune and inflammatory systems. MIF is released in vivo from activated immune cells as well as by the anterior pituitary gland upon stimulation of the hypothalamic-pituitary-adrenal axis. MIF also has been found to be secreted together with insulin from the pancreatic beta-cells and to act as an autocrine factor to stimulate insulin release. Since circulating MIF levels are elevated during stress or systemic inflammatory processes, this protein may play a central role in the control of insulin secretion during various disease states.
Resumo:
Background: Few data exist on secular trends of high blood pressure (HBP) detection and control in low and middle income countries, particularly in the African region. This study examines trends of HBP over 25 years based on 4 independent population surveys. In the Seychelles, heath care is free to all inhabitants within a national health system, inclusive all HBP medications. Previous studies have shown a transition from traditional to cardiometabolic cardiovascular risk factors in Seychelles. Age adjusted cardiovascular disease mortality rates is high but decreasing over the last two decades.
Resumo:
Ubiquitylation is crucial for regulating numerous cellular functions. In the kidney, ubiquitylation regulates the epithelial Na(+) channel ENaC. The importance of this process is highlighted in Liddle's syndrome, where mutations interfere with ENaC ubiquitylation, resulting in constitutive Na(+) reabsorption and hypertension. There is emerging evidence that NCC, involved in hypertensive diseases, is also regulated by ubiquitylation. Here, we discuss the current knowledge and recent findings in this field.
Resumo:
Apoptosis, differentiation, and proliferation are cellular responses which play a pivotal role in wound healing. During this process PPARbeta translates inflammatory signals into prompt keratinocyte responses. We show herein that PPARbeta modulates Akt1 activation via transcriptional upregulation of ILK and PDK1, revealing a mechanism for the control of Akt1 signaling. The resulting higher Akt1 activity leads to increased keratinocyte survival following growth factor deprivation or anoikis. PPARbeta also potentiates NF-kappaB activity and MMP-9 production, which can regulate keratinocyte migration. Together, these results provide a molecular mechanism by which PPARbeta protects keratinocytes against apoptosis and may contribute to the process of skin wound closure.
Resumo:
A host genetic variant (-35C/T) correlates with increased human leukocyte antigen C (HLA-C) expression and improved control of HIV-1. HLA-C-mediated immunity may be particularly protective because HIV-1 is unable to remove HLA-C from the cell surface, whereas it can avoid HLA-A- and HLA-B-mediated immunity by Nef-mediated down-modulation. However, some individuals with the protective -35CC genotype exhibit high viral loads. Here, we investigated whether the ability of HIV-1 to replicate efficiently in the "protective" high-HLA-C-expression host environment correlates with specific functional properties of Nef. We found that high set point viral loads (sVLs) were not associated with the emergence of Nef variants that had acquired the ability to down-modulate HLA-C or were more effective in removing HLA-A and HLA-B from the cell surface. However, in individuals with the protective -35CC genotype we found a significant association between sVLs and the efficiency of Nef-mediated enhancement of virion infectivity and modulation of CD4, CD28, and the major histocompatibility complex class II (MHC-II)-associated invariant chain (Ii), while this was not observed in subjects with the -35TT genotype. Since the latter Nef functions all influence the stimulation of CD4(+) T helper cells by antigen-presenting cells, they may cooperate to affect both the activation status of infected T cells and the generation of an antiviral cytotoxic T-lymphocyte (CTL) response. In comparison, different levels of viremia in individuals with the common -35TT genotype were not associated with differences in Nef function but with differences in HLA-C mRNA expression levels. Thus, while high HLA-C expression may generally facilitate control of HIV-1, Nef may counteract HLA-C-mediated immune control in some individuals indirectly, by manipulating T-cell function and MHC-II antigen presentation.
Resumo:
Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ-dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer.
Resumo:
In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.
Resumo:
Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.
Resumo:
Particular bacterial strains in certain natural environments prevent infectious diseases of plant roots. How these bacteria achieve this protection from pathogenic fungi has been analysed in detail in biocontrol strains of fluorescent pseudomonads. During root colonization, these bacteria produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors. Before engaging in these activities, biocontrol bacteria go through several regulatory processes at the transcriptional and post-transcriptional levels.